Exapnd your function:
\(\displaystyle \L\\\frac{sin(\frac{1}{n})n^{2}}{2n-1}=\frac{sin(\frac{1}{n})}{4(2n-1)}+\frac{nsin(\frac{1}{n})}{2}+\frac{sin(\frac{1}{n})}{4}\)
Now, \(\displaystyle \L\\\frac{nsin(\frac{1}{n})}{2}\) is the only limit which does not tend to 0. Guess what it is?.
We get this from making the observation that \(\displaystyle \L\\\lim_{n\to\infty}nsin(\frac{1}{n})=1\)
Let \(\displaystyle t=\frac{1}{n}\), then \(\displaystyle n=\frac{1}{t}\) and \(\displaystyle x\rightarrow\;\ {+\infty}\) as \(\displaystyle t\rightarrow \;\ 0^{+}\)
So, \(\displaystyle \L\\\lim_{n\to\infty}nsin(\frac{1}{n})=\lim_{t\to\0^{+}}\frac{sint}{t}=1\)