\(\displaystyle \lim_{t\to0}\frac{5^t-3^t}{t} \ gives \ one \ the \ indeterminate \ form \ \frac{0}{0}, \ hence \ the \ Marqui \ to \ the \ rescue.\)
\(\displaystyle D_t \ [5^t-3^t] \ = \ 5^tln5-3^tln3 \ and \ D_t \ [t] \ = \ 1\)
\(\displaystyle Hence \ we \ have \ \lim_{t\to0} \ [5^tln5-3^tln3] \ = \ ln5-ln3 \ = \ ln(5/3).\)
\(\displaystyle Look, \ D_t[t^2] \ = \ 2t, \ exponent \ a \ constant, \ but \ D_t[2^t] \ = \ 2^tln|t|, \ exponent \ a \ variable.\)
\(\displaystyle D_t[t^2] \ the \ hard \ way. \ Let \ y \ = \ t^2, \ then \ ln|y| \ = \ 2ln|t|, \ y \ = \ e^{2ln|t|}\)
\(\displaystyle y' \ = \ \frac{2e^{2ln|t|}}{t} \ = \ \frac{2t^2}{t} \ = \ 2t, \ Note: \ t^2 \ = \ e^{2ln|t|}\)
\(\displaystyle Now, \ D_t[2^t] \ Again \ let \ y \ = \ 2^t, \ then \ lny \ = \ tln(2) \ \implies \ y \ = \ e^{tln(2)}\)
\(\displaystyle Ergo, \ y' \ = \ ln(2)e^{tln2} \ = \ 2^tln(2), \ Again \ note: \ e^{tln(2)} \ = \ 2^t.\)
\(\displaystyle Hope \ this \ helped \ as \ it \ is \ a \ little \ confusing \ at \ first.\)