Hello, aswimmer113!
\(\displaystyle \lim_{x\to\infty}\,\left[(x^3\,+2x\,+\,5)^{\frac{1}{3}}\,-\,x\right]\)
You're right . . . we need the conjugate.
Galactus' trick involves this conjugate . . . I'll try to explain this.
We know that: \(\displaystyle \,p^3\,-\,q^3\;=\;(p\,-\,q)(p^2\,+\,pq\,+\,q^2)\)
. . where \(\displaystyle p^2\,+\,pq\,+\,q^2\) is the conjugate of \(\displaystyle p\,-\,q.\)
Then, surprisingly, \(\displaystyle \,a\,-\,b\) can be "factored" . . . . like this:
\(\displaystyle \;\;\;a\,-\,b\;=\;\left(\sqrt[3]{a}\right)^3\,-\,\left(\sqrt[3]{b}\right)^3 \;= \;\left(\sqrt[3]{a}\,-\,\sqrt[3]{b}\right)\,\left(\sqrt[3]{a^2}\,+\,\sqrt[3]{ab}\,+\,\sqrt[3]{b^2}\right)\)
We have: \(\displaystyle \,\underbrace{\sqrt[3]{x^3\,+\,2x\,+\,5}}\,-\,\underbrace{x}\)
. . . . . . . . . . . . . . \(\displaystyle \sqrt[3]a\)
. . . . . . . \(\displaystyle \sqrt[3]b\)
The conugate is: \(\displaystyle \,\left[\sqrt[3]{x^3+2x+5}\right]^2 \,+ \,\sqrt[3]{x^3+2x+5}\,\cdot\,x\,+\,x^2\)
. . . . . . . . . . . \(\displaystyle = \;(x^3\,+\,2x\,+\,5)^{\frac{1}{3}}\,+\,x(x^3+2x+5)^{\frac{1}{3}}\,+\,x^2\)