Let [imath]n[/imath] be a natural number and let [imath]S=\{0,1\}^{n}[/imath]. Recall that given [imath]p[/imath] with [imath]0<p<1[/imath] fixed, the binomial measure [imath]\beta: \wp(S) \rightarrow[0,1][/imath] is determined by
[imath]\qquad \qquad \beta\left(\left\{\left(\omega_{1}, \omega_{2}, \ldots, \omega_{n}\right)\right\}\right)=p^{\#\left\{j: \omega_{j}=1\right\}}(1-p)^{\#\left\{j: \omega_{j}=0\right\}}[/imath]
(a) Express the binomial measure as a product measure in terms of the probability measure [imath]\pi: \wp(\{0,1\}) \rightarrow[0,1][/imath] with [imath]\pi(\{1\})=p[/imath].
(b) Taking [imath]n=3[/imath] consider the sets
[imath]\qquad \qquad x^{-1}(\{j\}) \quad \text { for } j=0,1,2,3[/imath]
where [imath]x: S \rightarrow \mathbb{R}[/imath] by
[imath]\qquad \qquad x\left(\omega_{1}, \omega_{2}, \omega_{3}\right)=\omega_{1}+\omega_{2}+\omega_{3} [/imath]
(i) Find [imath]x^{-1}(\{j\})[/imath] for [imath]j=0,1,2,3[/imath].
(ii) Taking [imath]p=1 / 2[/imath], find [imath]M(j)=\alpha(\{j\})=\beta\left(x^{-1}(\{j\})\right)[/imath] for [imath]j=0,1,2,3[/imath].
(iii) Taking [imath]p=3 / 4[/imath], find [imath]M(j)=\alpha(\{j\})=\beta\left(x^{-1}(\{j\})\right)[/imath] for [imath]j=0,1,2,3[/imath].
(c) Generalize/repeat part (b) for [imath]n=4,5,6[/imath]
(d) Compute the integral of [imath]x[/imath] with respect to the binomial measure [imath]\beta[/imath] (for general [imath]n[/imath] and [imath]p[/imath] ).
[imath]\qquad \qquad \beta\left(\left\{\left(\omega_{1}, \omega_{2}, \ldots, \omega_{n}\right)\right\}\right)=p^{\#\left\{j: \omega_{j}=1\right\}}(1-p)^{\#\left\{j: \omega_{j}=0\right\}}[/imath]
(a) Express the binomial measure as a product measure in terms of the probability measure [imath]\pi: \wp(\{0,1\}) \rightarrow[0,1][/imath] with [imath]\pi(\{1\})=p[/imath].
(b) Taking [imath]n=3[/imath] consider the sets
[imath]\qquad \qquad x^{-1}(\{j\}) \quad \text { for } j=0,1,2,3[/imath]
where [imath]x: S \rightarrow \mathbb{R}[/imath] by
[imath]\qquad \qquad x\left(\omega_{1}, \omega_{2}, \omega_{3}\right)=\omega_{1}+\omega_{2}+\omega_{3} [/imath]
(i) Find [imath]x^{-1}(\{j\})[/imath] for [imath]j=0,1,2,3[/imath].
(ii) Taking [imath]p=1 / 2[/imath], find [imath]M(j)=\alpha(\{j\})=\beta\left(x^{-1}(\{j\})\right)[/imath] for [imath]j=0,1,2,3[/imath].
(iii) Taking [imath]p=3 / 4[/imath], find [imath]M(j)=\alpha(\{j\})=\beta\left(x^{-1}(\{j\})\right)[/imath] for [imath]j=0,1,2,3[/imath].
(c) Generalize/repeat part (b) for [imath]n=4,5,6[/imath]
(d) Compute the integral of [imath]x[/imath] with respect to the binomial measure [imath]\beta[/imath] (for general [imath]n[/imath] and [imath]p[/imath] ).
Last edited by a moderator: