Let [Math]f[/Math] : [Math]D[/Math] -> [Math]R[/Math] be a continuous function, where [Math]D \subset R^{k}[/Math]. Let [Math]\{x_{n}\}_{n = d}^{\infty}[/Math] be a sequence in [Math]D[/Math] that converges to [Math]x \in D[/Math]. Then [Math]f(X_{n})[/Math] -> [Math]f(x)[/Math]
We need to show that [Math]lim_{n -> \infty}f(x_{n}) = f(x)[/Math].
Since, [Math]\{x_{n}\}_{n = d}^{\infty}[/Math] is a sequence in [Math]D[/Math] that converges to [Math]x \in D[/Math] then there
[Math]\exists N_{\epsilon}[/Math] such that [Math]n \ge N_{\epsilon}[/Math] then [Math]|x - x_{n}| = r < \epsilon_{1}[/Math]. Since
[Math]\delta > 0, ((B_{\delta}(x) \cap D) / \{x\}) \neq \varnothing[/Math]. We know that there [Math]\exists \epsilon_{1} = \delta[/Math] meaning that
[Math]|x - x_{n}| = r < \delta[/Math], so [Math]\exists z = x_{n} \in B_{\delta}(x) \cap D[/Math].
Let [Math]a = x \in D[/Math], thus [Math]f[/Math] is continuous at [Math]x[/Math], by definition,
[Math]\forall z \in B_{\delta}(x) \cap D[/Math] s.t. [Math]|f(z) - f(x)| < \epsilon_{2}[/Math]. We know that [Math]\exists z = x_{n} \in B_{\delta}(x) \cap D[/Math],
so we can conclude that [Math]|f(x_{n}) - f(x)| < \epsilon{2}[/Math].
Thus we have proven that [Math]lim_{n -> \infty}f(x_{n}) = f(x)[/Math].
We need to show that [Math]lim_{n -> \infty}f(x_{n}) = f(x)[/Math].
Since, [Math]\{x_{n}\}_{n = d}^{\infty}[/Math] is a sequence in [Math]D[/Math] that converges to [Math]x \in D[/Math] then there
[Math]\exists N_{\epsilon}[/Math] such that [Math]n \ge N_{\epsilon}[/Math] then [Math]|x - x_{n}| = r < \epsilon_{1}[/Math]. Since
[Math]\delta > 0, ((B_{\delta}(x) \cap D) / \{x\}) \neq \varnothing[/Math]. We know that there [Math]\exists \epsilon_{1} = \delta[/Math] meaning that
[Math]|x - x_{n}| = r < \delta[/Math], so [Math]\exists z = x_{n} \in B_{\delta}(x) \cap D[/Math].
Let [Math]a = x \in D[/Math], thus [Math]f[/Math] is continuous at [Math]x[/Math], by definition,
[Math]\forall z \in B_{\delta}(x) \cap D[/Math] s.t. [Math]|f(z) - f(x)| < \epsilon_{2}[/Math]. We know that [Math]\exists z = x_{n} \in B_{\delta}(x) \cap D[/Math],
so we can conclude that [Math]|f(x_{n}) - f(x)| < \epsilon{2}[/Math].
Thus we have proven that [Math]lim_{n -> \infty}f(x_{n}) = f(x)[/Math].