length problem

synx

New member
Joined
Feb 25, 2006
Messages
20
I have to find the length of the equation x^(2/3)+y^(2/3)=1

I solve for y and get, y=+/- (x^(2/3)+1)^(3/2)

now dy/dx = (x^(2/3) +1)/x^(1/3)

the limits of integration should obviously be -1 to 1

so i pretty much get stuck on trying to integrate L = int( sqrt [(dy/dx)^2 + 1])

Am I doing this right?
 
The algebra is the booger here. It whittles down to an easy integral.
Arc length formula:

\(\displaystyle \L\\\int\sqrt{1+(\frac{dy}{dx})^{2}}dx\)

\(\displaystyle \L\\\frac{dy}{dx}=\frac{-\sqrt{1-x^{\frac{2}{3}}}}{x^{\frac{1}{3}}}\)

Square it and you get:

\(\displaystyle \L\\\frac{1-x^{\frac{2}{3}}}{x^{\frac{2}{3}}}\)

\(\displaystyle \L\\\int_{0}^{1}\sqrt{1+\left(\frac{1-x^{\frac{2}{3}}}{x^{\frac{2}{3}}}\right)}dx\)

\(\displaystyle \L\\\int_{0}^{1}\sqrt{\frac{1}{x^{\frac{2}{3}}}dx\)

\(\displaystyle \L\\\int_{0}^{1}{x^{\frac{-1}{3}}}dx\)


\(\displaystyle \L\\4\int_{0}^{1}x^{\frac{-1}{3}}dx\)

EDIT: yes, Soroban reminded me of something I overlooked. Because of the 'astroid'(new term for me), one must multiply by 4.
 
Hello, synx!

Here's another approach.
It may be beyond you presently, or you may not be allowed to use it.
I thought I'd explain it anyway . . .


\(\displaystyle \text{Find the length of the curve: }\L\,x^{\frac{2}{3}}\,+\,y^{\frac{2}{3}} \:=\:1\)

The curve is an astroid (not asteroid), a hypocycloid of four cusps.
Code:
          |
          *
         *|*
       *  |  *
  --*-----+-----*--
       *  |  *
         *|*
          *
          |

Its parametric equations are: \(\displaystyle \:\begin{array}{cc}x\:=\:\cos^3\theta \\ y \:=\:\sin^3\theta\end{array}\;\;\Rightarrow\;\;
\begin{array}\frac{dx}{d\theta} & \,= & -3\sin\theta\cos^2\theta \\ \frac{dy}{d\theta} & \,=\, & 3\sin^2\theta\cos\theta\end{array}\)


The parametric Arc Length formula is: \(\displaystyle \L\:L \;=\;\int^b_a\sqrt{\left(\frac{dx}{dt}\right)^2\,+\,\left(\frac{dy}{dt}\right)^2} \, dt\)


Under the radical, we have:
. . . . \(\displaystyle (-3\sin\theta\cos^2\theta)^2\,+\,(3\sin^2\theta\cos\theta)^2\)
. . \(\displaystyle = \;9\sin^2\theta\cos^4\theta\,+\,9\sin^4\theta\cos^2\theta\)
. . \(\displaystyle =\;9\sin^2\theta\cos^2\theta\left(\cos^2\theta\,+\,\sin^2\theta\right)\)
. . \(\displaystyle =\;9\sin^2\theta\cos^2\theta\)


The radical becomes: \(\displaystyle \:\sqrt{9\sin^2\theta\cos^2\theta} \;=\;3\sin\theta\cos\theta\)


We can integrate in the first quadrant and multiply by 4.

The integral becomes: \(\displaystyle \L\:L \;= \;4\,\times\,3\int^{\;\;\;\frac{\pi}{2}}_0\sin\theta\cos\theta\,d\theta\)

. . \(\displaystyle \L=\;\left\, 6\sin^2\theta\right|^{^{^{\frac{\pi}{2}}}}_{__{0}}\;=\;6\sin^2\left(\frac{\pi}{2}\right)\,-\,6\sin^20 \;= \;\fbox{6}\)

 
I like that, Soroban. A new '-oid' I haven't heard of.
 
Top