Hi, I'm looking at this problem from my book and can't understand how to get to step 4 , did the use the \(\displaystyle \sin^2\theta+\cos^2\theta=1\) identity to replace the \(\displaystyle \cos^2t+16\sin^2t\)?
Question: Find the length of the curve formed by one arch of the cycloid: x=4(t-sin(t)), y=4(1-cos(t)).
Formula: \(\displaystyle ds=\sqrt{\left(\dfrac{dx}{dy} \right)^2+\left(\dfrac{dy}{dt} \right)^2}dt\)
1. \(\displaystyle \dfrac{dx}{dt}=4(1-\cos t)\), \(\displaystyle \dfrac{dy}{dt}4\sin t\)
2. \(\displaystyle ds=\sqrt{\left[4(1-\cos t) \right]^2+\left(4\sin t \right)^2}dt\)
3. \(\displaystyle ds=\sqrt{\left[16(1-2\cos t+\cos ^2 t)\right]+\left(16\sin^2t \right)}dt\)
4. \(\displaystyle ds=\sqrt{16-32\cos t +16} dt\)
5. \(\displaystyle ds=\sqrt{32-32\cos t}dt\)
Evaluted using integration afterwards..
Question: Find the length of the curve formed by one arch of the cycloid: x=4(t-sin(t)), y=4(1-cos(t)).
Formula: \(\displaystyle ds=\sqrt{\left(\dfrac{dx}{dy} \right)^2+\left(\dfrac{dy}{dt} \right)^2}dt\)
1. \(\displaystyle \dfrac{dx}{dt}=4(1-\cos t)\), \(\displaystyle \dfrac{dy}{dt}4\sin t\)
2. \(\displaystyle ds=\sqrt{\left[4(1-\cos t) \right]^2+\left(4\sin t \right)^2}dt\)
3. \(\displaystyle ds=\sqrt{\left[16(1-2\cos t+\cos ^2 t)\right]+\left(16\sin^2t \right)}dt\)
4. \(\displaystyle ds=\sqrt{16-32\cos t +16} dt\)
5. \(\displaystyle ds=\sqrt{32-32\cos t}dt\)
Evaluted using integration afterwards..