Evaluate the Riemann sum for \(\displaystyle f(x) = 1 - \dfrac{1}{2}x\) with six subintervals, taking the sample points to be left endpoints.
\(\displaystyle f(x) = 1 - \dfrac{1}{2}x\) on interval \(\displaystyle [2,14]\) given \(\displaystyle [a, b]\)
\(\displaystyle \sum\limits_{i=4}^n \Delta x [f(a + i \Delta x - \Delta x)]\)
\(\displaystyle \Delta x = \dfrac{b - a}{n}\)
\(\displaystyle \Delta x = \dfrac{14 - 2}{6} = 2\)
\(\displaystyle n = 6\)
\(\displaystyle \sum\limits_{i=6}^n (2)[[f(2 + (1)(2) - (2))] + [f(2 + (2)(2) - (2))] + [f(2 + (3)(2) - (2))] + [f(2 + (4)(2) - (2))] + [f(2 + (5)(2) - (2))] + [f(2 + (6)(2) - (2))] \)
\(\displaystyle \sum\limits_{i=6}^n (2)[[f(2 + 2 - (2))] + [f(2 + 4 - (2))] + [f(2 + 6 - (2)]) + [f(2 + 8 - (2))] + [f(2 + 10 - (2))] + [f(2 + 12 - (2))] \)
\(\displaystyle \sum\limits_{i=6}^n (2)[[f(2)] + [f(4)] + [f(6)] + [f(8)] + [f(10)] + [f(12)] \)
\(\displaystyle \sum\limits_{i=6}^n (2)[[1 - \dfrac{1}{2}(2)] + [1 - \dfrac{1}{2}(4)] + [1 - \dfrac{1}{2}(6)] + [1 - \dfrac{1}{2}(8)] + [1 - \dfrac{1}{2} (10)] + [1 - \dfrac{1}{2}(12)] \)
\(\displaystyle \sum\limits_{i=6}^n (2)[[1 - (1)] + [1 - (2)] + [1 - (3)] + [1 - (4)] + [1 - (5)] + [1 - (6)] \)
\(\displaystyle \sum\limits_{i=6}^n (2)[[0] + [-1] + [-2] + [-3] + [-4] + [-5] \)
\(\displaystyle \sum\limits_{i=6}^n [0] + [-2] + [-4] + [-6] + [-8] + [-10] \)
On the right track?
\(\displaystyle f(x) = 1 - \dfrac{1}{2}x\) on interval \(\displaystyle [2,14]\) given \(\displaystyle [a, b]\)
\(\displaystyle \sum\limits_{i=4}^n \Delta x [f(a + i \Delta x - \Delta x)]\)
\(\displaystyle \Delta x = \dfrac{b - a}{n}\)
\(\displaystyle \Delta x = \dfrac{14 - 2}{6} = 2\)
\(\displaystyle n = 6\)
\(\displaystyle \sum\limits_{i=6}^n (2)[[f(2 + (1)(2) - (2))] + [f(2 + (2)(2) - (2))] + [f(2 + (3)(2) - (2))] + [f(2 + (4)(2) - (2))] + [f(2 + (5)(2) - (2))] + [f(2 + (6)(2) - (2))] \)
\(\displaystyle \sum\limits_{i=6}^n (2)[[f(2 + 2 - (2))] + [f(2 + 4 - (2))] + [f(2 + 6 - (2)]) + [f(2 + 8 - (2))] + [f(2 + 10 - (2))] + [f(2 + 12 - (2))] \)
\(\displaystyle \sum\limits_{i=6}^n (2)[[f(2)] + [f(4)] + [f(6)] + [f(8)] + [f(10)] + [f(12)] \)
\(\displaystyle \sum\limits_{i=6}^n (2)[[1 - \dfrac{1}{2}(2)] + [1 - \dfrac{1}{2}(4)] + [1 - \dfrac{1}{2}(6)] + [1 - \dfrac{1}{2}(8)] + [1 - \dfrac{1}{2} (10)] + [1 - \dfrac{1}{2}(12)] \)
\(\displaystyle \sum\limits_{i=6}^n (2)[[1 - (1)] + [1 - (2)] + [1 - (3)] + [1 - (4)] + [1 - (5)] + [1 - (6)] \)
\(\displaystyle \sum\limits_{i=6}^n (2)[[0] + [-1] + [-2] + [-3] + [-4] + [-5] \)
\(\displaystyle \sum\limits_{i=6}^n [0] + [-2] + [-4] + [-6] + [-8] + [-10] \)
Last edited: