Large Numbers

Radiant

New member
Joined
Jun 1, 2021
Messages
1
Hi there,

I'm working on a challenging puzzle which has me stumped. Here's the puzzle:

The following integers are consecutive **odd** powers of positive integer n, modulo a prime p.

- 90294841550344816920887395661747009736776650389614188142234605341400837126935378962489093789304037012868865437487922365342634723283696836637124520023049181869683469618895547182582440399365913174543225847872578172013129407552822938718555003731781986580089209691798780166234583492600874314576345541675093982137

- 42112740916772037375685254921538983911644443827842337394452880167068150594758982190383469218015976268028090254728528315130811516188594491321224583443439668701051438584579482605798009769238349101345491182202258282337139831875260201668992051044699720135353308959492194703707745594534013426741014891335870980880

- 87180918919574072205554476329837952799702171247429339727497586770094835390424317893348790803256513194120757507235333861390608969760508445506057205876811891955334356529195773541041204260787986038340782273645180474215454308964005172573507294260166685386641289134326371664778198645454685870091458817878746531813

- 66333292954178432288941676027475571830932728184361041976833108302152864435806237824011965396627497187209957429653087219620712885418961611550051600220673650628686383326072418081069989325327841047094971105949273922761137919336536404468380272474427193894169492676377106066924900762148034740644413480969423620637
.
(In other words, these are n^(2k+1) mod p, n^(2k+3) mod p, n^(2k+5) mod p, and n^(2k+7) mod p -- for some positive integer n, k and prime p.)
.
What are n and p?

Any help would be greatly appreciated.
 
I can find the remainder of [MATH]2^{999}[/MATH] mod [MATH]13[/MATH], using my simple calculator. It needs some patient, but it can be done.

It can be done even for those large numbers. It can also be done using some theorems.

But your question seems a hard one. You want to find the remainder of [MATH]3[/MATH] unknowns?
 
Top