IVP

jsbeckton

Junior Member
Joined
Oct 24, 2005
Messages
174
I'm studying my old tests for finals and can't remember how to get this one started:

Solve the IVP: y2xy=ex2,y(0)=1\displaystyle y' - 2xy = e^{x^2 } ,y(0) = 1

Can someone help me get started? Do I need to seperate the variables or use some other technique? Thanks a lot.
 
Hello, jsbeckton!

Solve:   y2xy=ex2,  y(0)=1\displaystyle \;y'\,-\,2xy\:=\:e^{x^2},\;y(0)\,=\,1
This one requires an Integrating Factor:   I=e(2x)dx  =  ex2\displaystyle \;I\:=\:e^{\int(-2x)dx} \;=\;e^{-x^2}


Multiply through by I:    ex2y2xex2y=ex2ex2\displaystyle I:\;\;e^{-x^2}\cdot y'\,-\,2xe^{-x^2}\cdot y\:=\:e^{-x^2}\cdot e^{x^2}

. . And we have: ddx(ex2y)=1\displaystyle \:\frac{d}{dx}\left(e^{-x^2}\cdot y\right)\:=\:1


Integrate: ex2y=x+C\displaystyle \:e^{-x^2}\cdot y \:= \:x\,+\,C

. . and we have: y=ex2(x+C)\displaystyle \:y\:=\:e^{x^2}(x\,+\,C)


Since y(0)=1\displaystyle y(0)\,=\,1, we have: e0(0+C)=1        C=1\displaystyle \,e^0(0 + C)\:=\:1\;\;\Rightarrow\;\;C\,=\,1

. . Therefore: y  =  ex2(x+1)\displaystyle \:y\;=\;e^{x^2}(x + 1)
 
Top