polar -> cartesien I think I've got this figured out but the answer I got is weird and since I was so dumb last time I just wanted to make sure I did this right...
\(\displaystyle r=15/(2+5cost)\)
\(\displaystyle 2r+5rcost=15\)
\(\displaystyle 2sqrt(x^2+y^2)+5x=15\)
\(\displaystyle 2sqrt(x^2+y^2)=15-5x\)
\(\displaystyle (2sqrt(x^2+y^2)=15-5x)^2\)
\(\displaystyle 4(x^2+y^2)=(15-5x)^2\)
\(\displaystyle 4x^2+4y^2=25x^2-150x+225\)
\(\displaystyle 4x^2+4y^2-25x^2+150x=225\)
-21x^2+150x+4y^2=225
-21(x^2+150/-21x+ 204.1)+4y^2=225+204.1
-21(x^2+300/-21)^2)+4y^2=429.1
-21(x+300/-21)^2+4y^2=429.1
\(\displaystyle y^2/107.28-(x-300/21)^2/20.4=1\)
\(\displaystyle r=15/(2+5cost)\)
\(\displaystyle 2r+5rcost=15\)
\(\displaystyle 2sqrt(x^2+y^2)+5x=15\)
\(\displaystyle 2sqrt(x^2+y^2)=15-5x\)
\(\displaystyle (2sqrt(x^2+y^2)=15-5x)^2\)
\(\displaystyle 4(x^2+y^2)=(15-5x)^2\)
\(\displaystyle 4x^2+4y^2=25x^2-150x+225\)
\(\displaystyle 4x^2+4y^2-25x^2+150x=225\)
-21x^2+150x+4y^2=225
-21(x^2+150/-21x+ 204.1)+4y^2=225+204.1
-21(x^2+300/-21)^2)+4y^2=429.1
-21(x+300/-21)^2+4y^2=429.1
\(\displaystyle y^2/107.28-(x-300/21)^2/20.4=1\)