I want to see if I computed the following limit correctly. In a curve sketching question, I'm suppose to to find the horizontal asymptotes of \(\displaystyle \
\L\
f(x) = \frac{{2x^3 + x^2 + 1}}{{x^2 }}
\\)
So this is what I did.
\(\displaystyle \
\L\
\lim\limits_{x \to \pm \infty } \frac{{2x^3 + x^2 + 1}}{{x^2 }} = \lim\limits_{x \to \pm \infty } \frac{{\frac{{2x^3 }}{{x^2 }} + \frac{{x^2 }}{{x^2 }} + \frac{1}{{x^2 }}}}{{\frac{{x^2 }}{{x^2 }}}} = \lim\limits_{x \to \pm \infty } \frac{{2x + 1 + \frac{1}{{x^2 }}}}{1} = \frac{{0 + 1 + 0}}{1} = \frac{1}{1} = 1
\\)
Therefore, y = 1 is a horizontal asymptote.
Is that right?
\L\
f(x) = \frac{{2x^3 + x^2 + 1}}{{x^2 }}
\\)
So this is what I did.
\(\displaystyle \
\L\
\lim\limits_{x \to \pm \infty } \frac{{2x^3 + x^2 + 1}}{{x^2 }} = \lim\limits_{x \to \pm \infty } \frac{{\frac{{2x^3 }}{{x^2 }} + \frac{{x^2 }}{{x^2 }} + \frac{1}{{x^2 }}}}{{\frac{{x^2 }}{{x^2 }}}} = \lim\limits_{x \to \pm \infty } \frac{{2x + 1 + \frac{1}{{x^2 }}}}{1} = \frac{{0 + 1 + 0}}{1} = \frac{1}{1} = 1
\\)
Therefore, y = 1 is a horizontal asymptote.
Is that right?