Is this limit correct?

kggirl

New member
Joined
Oct 5, 2005
Messages
43
Find the lim as x approaches infinity 3x^4 - 5x^2/2X^4 + 7x

3x^4 - 5x^2
__________ [1/4] = 3-5(1/x)
2X^4 + 7x _______ = 3 -5(0)/2+7(0) = 3/2
2 + 7(1/x)
 
kggirl said:
Find \(\displaystyle \lim{x \to \infty} \, \L \frac{3x^4 - 5x^2}{2x^4 + 7x}\)

\(\displaystyle = \lim{x \to \infty} \, \L \frac{(\frac{1}{x^4})(3x^4 \, - \, 5x^2)}{(\frac{1}{x^4})(2x^4 \, + \, 7x)}\)

\(\displaystyle = \lim{x \to \infty} \, \L \frac{3 \, - \, \frac{5}{x^2}}{2 \, + \, \frac{7}{x^3}} \, = \, \frac{3}{2}\)

Excellent work! Great stuff.
 
Top