Find \(\displaystyle \lim{x \to \infty} \, \L \frac{3x^4 - 5x^2}{2x^4 + 7x}\)
\(\displaystyle = \lim{x \to \infty} \, \L \frac{(\frac{1}{x^4})(3x^4 \, - \, 5x^2)}{(\frac{1}{x^4})(2x^4 \, + \, 7x)}\)
\(\displaystyle = \lim{x \to \infty} \, \L \frac{3 \, - \, \frac{5}{x^2}}{2 \, + \, \frac{7}{x^3}} \, = \, \frac{3}{2}\)