Cratylus
Junior Member
- Joined
- Aug 14, 2020
- Messages
- 82
Theorem [MATH]\aleph_{0}[/MATH]<c
Proof
Let A=N,by Cantor’s Theorem if A<P(A) then |A|<|P(A)|. But |A|=[MATH]\aleph_{0}[/MATH] and |P(A)|=[MATH]2^{A}[/MATH][MATH]\longrightarrow[/MATH] |P(A)|=c
If [MATH]\aleph_{0}[/MATH] <[MATH]2^{A}[/MATH] then [MATH]\aleph_{0}[/MATH] <c
Proof
Let A=N,by Cantor’s Theorem if A<P(A) then |A|<|P(A)|. But |A|=[MATH]\aleph_{0}[/MATH] and |P(A)|=[MATH]2^{A}[/MATH][MATH]\longrightarrow[/MATH] |P(A)|=c
If [MATH]\aleph_{0}[/MATH] <[MATH]2^{A}[/MATH] then [MATH]\aleph_{0}[/MATH] <c