invertible operators: Let X and Y be normed spaces and let operators $A,B \in L(X,Y)

theMR

New member
Joined
May 1, 2017
Messages
9
Screen Shot 2017-05-07 at 18.39.22.jpg

I could write it that way:

Let X and Y be normed spaces and let operators $A,B \in L(X,Y)$ continuously invertible (exists $A^{-1}, B^{-1} \in L(X,Y)$). Prove that if
$ \| B-A \| \le \frac{1}{2 \|A^{-1}\| },$
then
$\|B^{-1}-A^{-1}\| \le 2 \| A^{-1}\|^2 \| B-A\|.$

L(X,Y) is a linear space with the set of continuous linear operators $X \rightarrow Y$.
For $A\in L(X,Y)$:
$\| A\| \colon = sup_{x\in B_X} \| Ax \|$

I don't know how to start.
 
Last edited by a moderator:
View attachment 8029

I could write it that way:

Let X and Y be normed spaces and let operators $A,B \in L(X,Y)$ continuously invertible (exists $A^{-1}, B^{-1} \in L(X,Y)$). Prove that if
$ \| B-A \| \le \frac{1}{2 \|A^{-1}\| },$
then
$\|B^{-1}-A^{-1}\| \le 2 \| A^{-1}\|^2 \| B-A\|.$

L(X,Y) is a linear space with the set of continuous linear operators $X \rightarrow Y$.
For $A\in L(X,Y)$:
$\| A\| \colon = sup_{x\in B_X} \| Ax \|$

I don't know how to start.
What are your thoughts?

Please share your work with us ...even if you know it is wrong.

If you are stuck at the beginning tell us and we'll start with the definitions.

You need to read the rules of this forum. Please read the post titled "Read before Posting" at the following URL:

http://www.freemathhelp.com/forum/announcement.php?f=33
 
Last edited by a moderator:
At first I should consider the case when X=Y and A=I, the identify operator. In this case $\| B-I \| \le \frac{1}{2}$, so the inverse of B is given by $B^{-1}= \sum_{n=0}^{\infty} (I-B)^n$. I have to show that


\[ \| B^{-1}-I \| \le 2 \| B-I \| (*) \]


but I can't figure it out, can you please help me? I have done the rest with the general case:


\begin{align*}
&\| B-A \| \le \frac{1}{2 \|A^{-1}\| } \mid \cdot \|A^{-1} \| \\
&\| B-A \| \cdot \| A^{-1} \| \le \frac{1}{2} \\
&\| B\cdot A^{-1}-A\cdot A^{-1} \| =\| B\cdot A^{-1} -I \| \le \| B-A\| \cdot \| A^{-1}\|
\le \frac{1}{2}
\end{align*}


Using the previous case (*) with $BA^{-1}$ in place of $B$:
\begin{align*}
&\| (BA^{-1})^{-1} -I\|= \| B^{-1} \cdot (A^{-1})^{-1} -I\| = \| A\cdot B^{-1} -I \|
\le 2 \| BA^{-1}-I \| \\
&\|B^{-1}-A^{-1}\| \le \| A\cdot B^{-1} -I \| \cdot \| A^{-1}\| \le
2 \| BA^{-1}-I \|\cdot \| A^{-1}\|=\\
&=2\| A^{-1}\| \cdot \| BA^{-1}-A\cdot A^{-1}\|=
2 \| A^{-1}\| \cdot \| A^{-1}(B-A)\| \le 2 \| A^{-1}\|^2 \cdot \| B-A\|
\end{align*}
 
Last edited:
Top