I could write it that way:
Let X and Y be normed spaces and let operators $A,B \in L(X,Y)$ continuously invertible (exists $A^{-1}, B^{-1} \in L(X,Y)$). Prove that if
$ \| B-A \| \le \frac{1}{2 \|A^{-1}\| },$
then
$\|B^{-1}-A^{-1}\| \le 2 \| A^{-1}\|^2 \| B-A\|.$
L(X,Y) is a linear space with the set of continuous linear operators $X \rightarrow Y$.
For $A\in L(X,Y)$:
$\| A\| \colon = sup_{x\in B_X} \| Ax \|$
I don't know how to start.
Last edited by a moderator: