inverse trig integration

NRS

Junior Member
Joined
Sep 14, 2009
Messages
62
Okay, I'm having a tough time with this problem, I really don't know where to start.

My main trouble is in getting the variable out of the denominator, I know it wil probobly be very obvious once I get help :oops:.
[attachment=0:1fpp5f1q]math.jpg[/attachment:1fpp5f1q]
 

Attachments

  • math.jpg
    math.jpg
    50.2 KB · Views: 244
---------------------------

When you take the radical symbol it's actually to the power 1/2 . . .

x=x1/2\displaystyle \sqrt{x} = x^{1/2}
 
Well, I'm still experiencing mental block, sorry. Why does it matter that the radical can be rewritten?
 
Aladdin said:
---------------------------

When you take the radical symbol it's actually to the power 1/2 . . .

x=x1/2\displaystyle \sqrt{x} = x^{1/2}


1x= x1/2\displaystyle \frac{1}{\sqrt{x}} = \ x^{-1/2}
 
dt14t2. Let u = 2t,      du = 2dt\displaystyle \int\frac{dt}{\sqrt{1-4t^{2}}}. \ Let \ u \ = \ 2t, \ \implies \ du \ = \ 2dt

Hence, we have: 12du1u2 = arcsinu2+C = arcsin2t2+C\displaystyle Hence, \ we \ have: \ \frac{1}{2}\int\frac{du}{\sqrt{1-u^{2}}} \ = \ \frac{arcsin|u|}{2}+C \ = \ \frac{arcsin|2t|}{2}+C
 
BigGlenntheHeavy said:
dt14t2. Let u = 2t,      du = 2dt\displaystyle \int\frac{dt}{\sqrt{1-4t^{2}}}. \ Let \ u \ = \ 2t, \ \implies \ du \ = \ 2dt

Hence, we have: 12du1u2 = arcsinu2+C = arcsin2t2+C\displaystyle Hence, \ we \ have: \ \frac{1}{2}\int\frac{du}{\sqrt{1-u^{2}}} \ = \ \frac{arcsin|u|}{2}+C \ = \ \frac{arcsin|2t|}{2}+C

Did you leave out the t in the denominator?
 
Thankyou, I'll have to follow that later. Right now my sister's in line for the computer... so I'm going to have to wait to try my understanding on you're explanation, But I'm sure it will help :D
 
OK, my mistake, thought t was a + sign, ergo one way:\displaystyle OK, \ my \ mistake, \ thought \ t \ was \ a \ + \ sign, \ ergo \ one \ way:

dtt(14t2)1/2, Let u = (14t2)1/2      t2 = 1u24\displaystyle \int\frac{dt}{t(1-4t^{2})^{1/2}}, \ Let \ u \ = \ (1-4t^{2})^{1/2} \ \implies \ t^{2} \ = \ \frac{1-u^{2}}{4}

and du = 12(14t2)1/2(8t)dt = 4tudt      dt = u4tdu\displaystyle and \ du \ = \ \frac{1}{2}(1-4t^{2})^{-1/2}(-8t)dt \ = \ \frac{-4t}{u}dt \ \implies \ dt \ = \ \frac{u}{-4t}du

Hence, dtt(14t2)1/2 = 14ut2udu = 14dut2 = du1u2.\displaystyle Hence, \ \int\frac{dt}{t(1-4t^{2})^{1/2}} \ = \ \frac{-1}{4}\int\frac{u}{t^{2}u}du \ = \ \frac{-1}{4}\int\frac{du}{t^{2}} \ = \ -\int\frac{du}{1-u^{2}}.

= [12(u+1)12(u1)]du = 12duu112duu+1,\displaystyle = \ -\int\bigg[\frac{1}{2(u+1)}-\frac{1}{2(u-1)}\bigg]du \ = \ \frac{1}{2}\int\frac{du}{u-1}-\frac{1}{2}\int\frac{du}{u+1},

= (after resub, etc.) 12ln(14t2)1/21(14t2)1/2+1, Note: Absolute value sign is necessary.\displaystyle = \ (after \ resub, \ etc.) \ \frac{1}{2}ln\bigg|\frac{(1-4t^{2})^{1/2}-1}{(1-4t^{2})^{1/2}+1}\bigg|, \ Note: \ Absolute \ value \ sign \ is \ necessary.

Check: Dt[12ln(14t2)1/21(14t2)1/2+1] = 1t(14t2)1/2\displaystyle Check: \ D_t\bigg[\frac{1}{2}ln\bigg|\frac{(1-4t^{2})^{1/2}-1}{(1-4t^{2})^{1/2}+1}\bigg|\bigg] \ = \ \frac{1}{t(1-4t^{2})^{1/2}}
 
Another way (probably the easiest):\displaystyle Another \ way \ (probably \ the \ easiest):

dtt(14t2)1/2, Let 2t = sin(θ)      t = sin(θ)2 and dt = cos(θ)2dθ.\displaystyle \int\frac{dt}{t(1-4t^{2})^{1/2}}, \ Let \ 2t \ = \ sin(\theta) \ \implies \ t \ = \ \frac{sin(\theta)}{2} \ and \ dt \ = \ \frac{cos(\theta)}{2}d\theta.

Hence, we have cos(θ)sin(θ)cos(θ)dθ = csc(θ)dθ = lncsc(θ)+cot(θ)+C\displaystyle Hence, \ we \ have \ \int\frac{cos(\theta)}{sin(\theta)cos(\theta)}d\theta \ = \ \int csc(\theta)d\theta \ = \ -ln|csc(\theta)+cot(\theta)|+C

Hence, we have dtt(14t2)1/2 = ln1+(14t2)1/22t+C, 1/2   t  1/2, t  0.\displaystyle Hence, \ we \ have \ \int\frac{dt}{t(1-4t^{2})^{1/2}} \ = \ -ln\bigg|\frac{1+(1-4t^{2})^{1/2}}{2t}\bigg|+C, \ -1/2 \ \le \ \ t \ \le \ 1/2, \ t \ \ne \ 0.

Check: Dt[ln1+(14t2)1/22t+C] = 1t(14t2)1/2.\displaystyle Check: \ D_t\bigg[-ln\bigg|\frac{1+(1-4t^{2})^{1/2}}{2t}\bigg|+C\bigg] \ = \ \frac{1}{t(1-4t^{2})^{1/2}}.
 
Glenn I've tested my professor with this :) He ran away from the answer and said that it doesn't have an answer unless a boundry is exist . . .
:)
 
Right Aladdin, look at the integral. If we letf(x) = 1t(14t2)1/2,\displaystyle Right \ Aladdin, \ look \ at \ the \ integral. \ If \ we \ let f(x) \ = \ \frac{1}{t(1-4t^{2})^{1/2}},

then (14t2) >0, Why? This implies 4t2 < 1, implies t2 < 14,\displaystyle then \ (1-4t^{2}) \ >0, \ Why? \ This \ implies \ 4t^{2} \ < \ 1, \ implies \ t^{2} \ < \ \frac{1}{4},

implies t < 12, hence 12 < t < 12, t  0\displaystyle implies \ |t| \ < \ \frac{1}{2}, \ hence \ -\frac{1}{2} \ < \ t \ < \ \frac{1}{2}, \ t \ \ne \ 0

So, the solution is correct providing it is within this domain.\displaystyle So, \ the \ solution \ is \ correct \ providing \ it \ is \ within \ this \ domain.

Just remember Aladdin, division by zero is a nono.\displaystyle Just \ remember \ Aladdin, \ division \ by \ zero \ is \ a \ no-no.
 
Ahaaa . . .

Thanks Glenn that was a nice prove . . .

Back to you question : You can't have a negative number under a radical in R .
 
Look, 14t2, then 14t2  0 usually.\displaystyle Look, \ \sqrt{1-4t^2}, \ then \ 1-4t^2 \ \ge \ 0 \ usually.

However if 14t2 is the denominator of a fraction, then 14t2 > 0\displaystyle However \ if \ \sqrt{1-4t^{2}} \ is \ the \ denominator \ of \ a \ fraction, \ then \ {1-4t^{2}} \ > \ 0

as if it equal zero, then we would have division by zero, a nono.\displaystyle as \ if \ it \ equal \ zero, \ then \ we \ would \ have \ division \ by \ zero, \ a \ no-no.
 
Another thing Aladdin, we were given to find the integral of a function, which we did.\displaystyle Another \ thing \ Aladdin, \ we \ were \ given \ to \ find \ the \ integral \ of \ a \ function, \ which \ we \ did.

The problem said nothing about the domain in which this integral will work.\displaystyle The \ problem \ said \ nothing \ about \ the \ domain \ in \ which \ this \ integral \ will \ work.

You professor is wrong: as we were ask to find the antiderivative of f(x), not its domain\displaystyle You \ professor \ is \ wrong: \ as \ we \ were \ ask \ to \ find \ the \ antiderivative \ of \ f(x), \ not \ its \ domain

 or range.\displaystyle \ or \ range.
 
BigGlenntheHeavy said:
You professor is wrong: as we were ask to find the antiderivative of f(x), not its domain\displaystyle You \ professor \ is \ wrong: \ as \ we \ were \ ask \ to \ find \ the \ antiderivative \ of \ f(x), \ not \ its \ domain

 or range.\displaystyle \ or \ range.

So the antideriative exist . . .

Yes , we're not asked to find the domain or range : :

So I'm going to give him your answer and see what he'll say !
 
Here is the proof; send it to your professor.\displaystyle Here \ is \ the \ proof; \ send \ it \ to \ your \ professor.

dtt(14t2)1/2 = ln1+(14t2)1/22t+C\displaystyle \int\frac{dt}{t(1-4t^{2})^{1/2}} \ = \ -ln\bigg|\frac{1+(1-4t^{2})^{1/2}}{2t}\bigg|+C
Check: Dt[ln1+(14t2)1/22t+C] = 1t(14t2)1/2.\displaystyle Check: \ D_t\bigg[-ln\bigg|\frac{1+(1-4t^{2})^{1/2}}{2t}\bigg|+C\bigg] \ = \ \frac{1}{t(1-4t^{2})^{1/2}}.
 
As Glenn pointed out, this is a function with domain (-1/2,0)U(0,1/2). That is as general as it gets for this f in the Reals. Glenn's solution is the anti-derivative for f on any subset of this domain. The Definite Integral will converge for any bounds, say a to b, in the domain of the function as long as a and b have the same sign. The non-removable discontinuity at 0 is what might be causing the fuss with your professor.
 
Top