f(x) = (1 + tan(x))[sup:37pfknz6]3/2[/sup:37pfknz6] for -pi/4 < x < pi/2
Let f[sup:37pfknz6]-1[/sup:37pfknz6] denote the inverse function of f. Write an expression that gives f[sup:37pfknz6]-1[/sup:37pfknz6](x) for all x in the domain of f[sup:37pfknz6]-1[/sup:37pfknz6].
y = (1 + tan(x))^3/2
y^2/3 = 1 + tan(x)
y^2/3 -1 = tan(x)
??
I can't isolate x to get f[sup:37pfknz6]-1[/sup:37pfknz6](y), so I can't substitute x and y for f[sup:37pfknz6]-1[/sup:37pfknz6](x). Does this need calculus?
- Dylan
Let f[sup:37pfknz6]-1[/sup:37pfknz6] denote the inverse function of f. Write an expression that gives f[sup:37pfknz6]-1[/sup:37pfknz6](x) for all x in the domain of f[sup:37pfknz6]-1[/sup:37pfknz6].
y = (1 + tan(x))^3/2
y^2/3 = 1 + tan(x)
y^2/3 -1 = tan(x)
??
I can't isolate x to get f[sup:37pfknz6]-1[/sup:37pfknz6](y), so I can't substitute x and y for f[sup:37pfknz6]-1[/sup:37pfknz6](x). Does this need calculus?
- Dylan