inverse laplace: 3s/(s^2 -2s + 7)

TwistedNerve

New member
Joined
Nov 19, 2007
Messages
4
hey. i need help with the inverse laplace of something. im guessing theres an algebra trick and i just dont see it...

3s/(s^2 -2s + 7)
 
Re: inverse laplace

Inverse laplace of 3ss22s+7\displaystyle \frac{3s}{s^{2}-2s+7}?

Complete the square in the denominator.

3s(s1)2+6\displaystyle \frac{3s}{(s-1)^{2}+6}

b(p+a)2+b2=eatsin(bt)\displaystyle \frac{b}{(p+a)^{2}+b^{2}}=e^{-at}sin(bt)

p+a(p+a)2+b2=eatcos(bt)\displaystyle \frac{p+a}{(p+a)^{2}+b^{2}}=e^{-at}cos(bt)

I get 3etcos(6t)+6etsin(6t)2=et(6cos(6t)+6sin(6t))2\displaystyle 3e^{t}cos(\sqrt{6}t)+\frac{\sqrt{6}e^{t}sin(\sqrt{6}t)}{2}=\frac{e^{t}(6cos(\sqrt{6}t)+\sqrt{6}sin(\sqrt{6}t))}{2}
 
Top