inverse function

spacewater

Junior Member
Joined
Jul 10, 2009
Messages
67
problem
f(x)=x1\displaystyle f(x) = x^{-1}

f(x+h)f(x)h\displaystyle \frac{f(x+h) - f(x)}{h}

steps
f(1x+h)f(1x)h\displaystyle \frac{f(\frac {1}{x}+h)-f(\frac{1}{x})}{h}

hh=1\displaystyle \frac {h}{h} = 1

final answer
1\displaystyle 1
 
spacewater said:
problem
f(x)=x1\displaystyle f(x) = x^{-1}

f(x+h)f(x)h\displaystyle \frac{f(x+h) - f(x)}{h}

steps
f(1x+h)f(1x)h\displaystyle \frac{f(\frac {1}{x}+h)-f(\frac{1}{x})}{h}

hh=1\displaystyle \frac {h}{h} = 1

final answer
1\displaystyle 1

I don't know - what you are trying to do - it is so confused it is not even wrong!

f(x)=1x\displaystyle f(x) \, = \, \frac{1}{x}

f(x+h)=1x+h\displaystyle f(x+h) \, = \, \frac{1}{x+h}

f(x+h)f(x)h=1x+h1xh=x(x+h)hx(x+h)\displaystyle \frac{f(x+h)-f(x)}{h} \, = \, \frac{\frac{1}{x+h} - \frac{1}{x}}{h} \, = \, \frac{x - (x+h)}{h\cdot x \cdot (x+h)}

Now finish it ... carefully
 
Subhotosh Khan said:
spacewater said:
problem
f(x)=x1\displaystyle f(x) = x^{-1}

f(x+h)f(x)h\displaystyle \frac{f(x+h) - f(x)}{h}

steps
f(1x+h)f(1x)h\displaystyle \frac{f(\frac {1}{x}+h)-f(\frac{1}{x})}{h}

hh=1\displaystyle \frac {h}{h} = 1

final answer
1\displaystyle 1

I don't know - what you are trying to do - it is so confused it is not even wrong!

f(x)=1x\displaystyle f(x) \, = \, \frac{1}{x}

f(x+h)=1x+h\displaystyle f(x+h) \, = \, \frac{1}{x+h}

f(x+h)f(x)h=1x+h1xh=x(x+h)hx(x+h)\displaystyle \frac{f(x+h)-f(x)}{h} \, = \, \frac{\frac{1}{x+h} - \frac{1}{x}}{h} \, = \, \frac{x - (x+h)}{h\cdot x \cdot (x+h)} <------Shouldn't the multiplication of x(x+h)\displaystyle x(x+h) to cancel out the denominator be on numerator part only and exclude the h\displaystyle h in the denominator?

Now finish it ... carefully

xxhx2h+xh2\displaystyle \frac{x-x-h}{x^2h+xh^2}


final answer
1x2+xh\displaystyle -\frac {1}{x^2+xh}
 
 
Top