Re: inverse functions
To find the graph of the inverse (which is a function, by the way), plot a bunch of points for f(x), reverse the x- and y-values, and then plot the new (reversed) points. These new points should allow you to sketch f[sup:8w3uiy49]-1[/sup:8w3uiy49](x).
To find the "formula", you'll have to be clever. If you have a quadratic function and need to find the inverse, you know it's easy if it can be put into the form "y = a(x - h)[sup:8w3uiy49]2[/sup:8w3uiy49] + k" or just "y = a(x - h)[sup:8w3uiy49]2[/sup:8w3uiy49]":
. . . . .f(x) = y = 3(x - 2)[sup:8w3uiy49]2[/sup:8w3uiy49], x < 2
Switch the variables:
. . . . .x = 3(y - 2)[sup:8w3uiy49]2[/sup:8w3uiy49]
Solve for "y=":
. . . . .x / 3 = (y - 2)[sup:8w3uiy49]2[/sup:8w3uiy49]
. . . . .+/-sqrt[x / 3] = y - 2
. . . . .+/-sqrt[x / 3] + 2 = y
Since x < 2, the original function had been the left-hand side of the parabola, so the inverse is the bottom half of the square root:
. . . . .f[sup:8w3uiy49]-1[/sup:8w3uiy49] = -sqrt[x / 3], x > 0
If the quadratic is "messy", you have to "complete the square" before you can find the inverse (or else get messy with the Quadratic Formula, and -- trust me on this -- you do not want to mess with any "cubic" formulas!!). Can we "complete the cube" here?
Returning to your exercise: You know that a cubed binomial is of the form:
. . . . .(x + b)[sup:8w3uiy49]3[/sup:8w3uiy49] = x[sup:8w3uiy49]3[/sup:8w3uiy49] + 3x[sup:8w3uiy49]2[/sup:8w3uiy49]b + 3xb[sup:8w3uiy49]2[/sup:8w3uiy49] + b[sup:8w3uiy49]3[/sup:8w3uiy49]
Can we rearrange your cubic to "fit" this?
. . . . .x[sup:8w3uiy49]3[/sup:8w3uiy49] + 12x[sup:8w3uiy49]2[/sup:8w3uiy49] + 48x + 61
. . . . .x[sup:8w3uiy49]3[/sup:8w3uiy49] + 3(x[sup:8w3uiy49]2[/sup:8w3uiy49])(4) + 3(x)(16) + 61
. . . . .x[sup:8w3uiy49]3[/sup:8w3uiy49] + 3(x[sup:8w3uiy49]2[/sup:8w3uiy49])(4) + 3(x)(4[sup:8w3uiy49]2[/sup:8w3uiy49]) + 61
What then should "b" equal? What is the cubed-binomial form? Can you then solve for the cube-root inverse function? :wink:
Eliz.