If
is a sequence such that
converges whenever
is a subsequence of
, then
is absolutely convergent. (A series such as
is called a subseries of
.)
Any ideas?
Can I take c(n) subseq of a(n) such that every positive element of a(n) is an element of c(n). d(n) similarly picks up all the negative elements of a(n). Summation of c(n) minus summation d(n) is bounded by hypothesis, so a(n) is absolutely convergent. does that follow?
[FONT=MathJax_Math]a[FONT=MathJax_Math]n[/FONT][/FONT]
is a sequence such that
[FONT=MathJax_Size1]∑[FONT=MathJax_Main]∞[/FONT][FONT=MathJax_Math]n[/FONT][FONT=MathJax_Main]=[/FONT][FONT=MathJax_Main]1[/FONT][FONT=MathJax_Math]b[/FONT][FONT=MathJax_Math]n[/FONT][/FONT]
converges whenever
[FONT=MathJax_Math]b[FONT=MathJax_Math]n[/FONT][/FONT]
is a subsequence of
[FONT=MathJax_Math]a[FONT=MathJax_Math]n[/FONT][/FONT]
, then
[FONT=MathJax_Size1]∑[FONT=MathJax_Main]∞[/FONT][FONT=MathJax_Math]n[/FONT][FONT=MathJax_Main]=[/FONT][FONT=MathJax_Main]1[/FONT][FONT=MathJax_Math]a[/FONT][FONT=MathJax_Math]n[/FONT][/FONT]
is absolutely convergent. (A series such as
[FONT=MathJax_Size1]∑[FONT=MathJax_Main]∞[/FONT][FONT=MathJax_Math]n[/FONT][FONT=MathJax_Main]=[/FONT][FONT=MathJax_Main]1[/FONT][FONT=MathJax_Math]b[/FONT][FONT=MathJax_Math]n[/FONT][/FONT]
is called a subseries of
[FONT=MathJax_Size1]∑[/FONT][FONT=MathJax_Main]∞[/FONT][FONT=MathJax_Math]n[/FONT][FONT=MathJax_Main]=[/FONT][FONT=MathJax_Main]1[/FONT][FONT=MathJax_Math]a[/FONT][FONT=MathJax_Math]n[/FONT]
.)
Any ideas?
Can I take c(n) subseq of a(n) such that every positive element of a(n) is an element of c(n). d(n) similarly picks up all the negative elements of a(n). Summation of c(n) minus summation d(n) is bounded by hypothesis, so a(n) is absolutely convergent. does that follow?
Last edited: