Interval of Convergence

ginnyflute453

New member
Joined
Feb 22, 2010
Messages
2
Let f(x) be a function defined by f(x)= (sum from n=1 to infinity) ((-1)[sup:349j3za1]n+1[/sup:349j3za1]*x[sup:349j3za1]n[/sup:349j3za1])/(4[sup:349j3za1]n[/sup:349j3za1]))

a. Determine the interval of convergence for f(x)
b. Determine the interval of convergence for (integral) of f(x)dx
 
f(x) = n=1(1)n+1xn4n\displaystyle f(x) \ = \ \sum_{n=1}^{\infty}\frac{(-1)^{n+1} x^{n}}{4^{n}}

Ratio Test: limnan+1an = limnxn+14n+14nxn\displaystyle Ratio \ Test: \ \lim_{n\to\infty}\bigg|\frac{a_{n+1}}{a_n}\bigg| \ = \ \lim_{n\to\infty}\bigg|\frac{x^{n+1}}{4^{n+1}}*\frac{4^{n}}{x^{n}}\bigg|

= limnx4 < 1,      x < 4      4 < x < 4.\displaystyle = \ \lim_{n\to\infty}\frac{|x|}{4} \ < \ 1, \ \implies \ |x| \ < \ 4 \ \implies \ -4 \ < \ x \ < \ 4.

Hence, interval of convergence is 4 < x < 4, but what about the endpoints?\displaystyle Hence, \ interval \ of \ convergence \ is \ -4 \ < \ x \ < \ 4, \ but \ what \ about \ the \ endpoints?

n=1(1)n+1(4)n4n = n=1(1)n+1(1)n4n4n\displaystyle \sum_{n=1}^{\infty}\frac{(-1)^{n+1}(-4)^{n}}{4^{n}} \ = \ \sum_{n=1}^{\infty}\frac{(-1)^{n+1}(-1)^{n}4^{n}}{4^{n}}

= n=1(1)2n+1 = 11111... diverges, and\displaystyle = \ \sum_{n=1}^{\infty}(-1)^{2n+1} \ = \ -1-1-1-1-1... \ diverges, \ and

n=1(1)n+14n4n = n=1(1)n+1 = 11+11+1...diverges\displaystyle \sum_{n=1}^{\infty}\frac{(-1)^{n+1}4^{n}}{4^{n}} \ = \ \sum_{n=1}^{\infty}(-1)^{n+1} \ = \ 1-1+1-1+1...diverges

Now, since both endpoints diverge, the limit of convergence is (4,4).\displaystyle Now, \ since \ both \ endpoints \ diverge, \ the \ limit \ of \ convergence \ is \ (-4,4).
 
Top