Interval of Convergence for series

erndoglai

New member
Joined
Aug 24, 2009
Messages
4
I'm a little stuck on a problem or i'm unsure of where to go...

The question states:
Find the opening interval of x in which the series converges

infinite
E (-1)^n (x^n)/[(n+1)2^n]
n=1

so far i've attempted to do the ratio test (An+1/An) and came up with

lim (n+1/n+2)(-x/2)
n->infinite

i got confused after that and i'm unsure but i think the next step would be the |-x/2| < 1 to show that it converges?
any help would be great!
 
Hello, erndoglai!

One slight correction . . .


Find the interval of convergence:   n=1(1)nxn(n+1)2n\displaystyle \text{Find the interval of convergence: }\;\sum^{\infty}_{n=1} \frac{(-1)^n x^n}{(n+1)2^n}

so far i’ve attempted to do the ratio test An+1An and came up with:   limnn+1n+2(x2)\displaystyle \text{so far i've attempted to do the ratio test }\frac{A_{n+1}}{A_n}\text{ and came up with: }\;\lim_{n\to\infty} \frac{n+1}{n+2}\left(-\frac{x}{2}\right)

\(\displaystyle \text{i think the next step would be: }\:\left|-\frac{x}{2}\right|\:<\<1\,\text{ to show that it converges.}\)

Basically, your work is correct, but that minus-sign can be misleading.


The Ratio Test is the limit of the absolute  value of that fraction:   R  =  limnAn+1An\displaystyle \text{The Ratio Test is the limit of the }absolute\; value\text{ of that fraction: }\;R \;=\;\lim_{n\to\infty}\left|\frac{A_{n+1}}{A_n}\right|

So we can drop that (1)n at the beginning:   xn+1(n+2)2n+1(n+1)2nxn\displaystyle \text{So we can drop that }(-1)^n\text{ at the beginning: }\;\left|\frac{x^{n+1}}{(n+2)2^{n+1}}\cdot\frac{(n+1)2^n}{x^n}\right|

. . and we have:   2n2n+1n+1n+2xn+1xn  =  12n+1n+2x  =  n+1n+2x2\displaystyle \text{and we have: }\;\left|\frac{2^n}{2^{n+1}}\cdot\frac{n+1}{n+2}\cdot\frac{x^{n+1}}{x^n}\right| \;=\;\left|\frac{1}{2}\cdot\frac{n+1}{n+2}\cdot x\right| \;=\;\left|\frac{n+1}{n+2}\cdot\frac{x}{2}\right|


Then:   limnn+1n+2x2  =  limn1+1n1+2nx2  =  1+01+0x2  =  x2\displaystyle \text{Then: }\;\lim_{n\to\infty}\left|\frac{n+1}{n+2}\cdot\frac{x}{2}\right| \;=\;\lim_{n\to\infty}\left|\frac{1 + \frac{1}{n}}{1 + \frac{2}{n}}\cdot\frac{x}{2}\right| \;=\;\left|\frac{1+0}{1+0}\cdot\frac{x}{2}\right| \;=\;\left|\frac{x}{2}\right|



Moral: When performing the Ratio Test on an alternating series,\displaystyle \text{Moral: When performing the Ratio Test on an alternating series,}
. . . . . . . . . . . . . . . drop the "alternator".\displaystyle \text{drop the "alternator".}

 
n=1(1)nxn(n+1)2n. Now, to test for convergence, apply the ratio test.\displaystyle \sum_{n=1}^{\infty}\frac{(-1)^{n}x^{n}}{(n+1)2^{n}}. \ Now, \ to \ test \ for \ convergence, \ apply \ the \ ratio \ test.

Ergo, limn xn+1(n+2)2n+1(n+1)2nxn, Note: (1)? = 1.\displaystyle Ergo, \ \lim_{n\to\infty} \ \bigg|\frac{x^{n+1}}{(n+2)2^{n+1}}*\frac{(n+1)2^{n}}{x^{n}}\bigg|, \ Note: \ |(-1)^{?}| \ = \ 1.

= limn x(n+1)2(n+2) = x2 limnn+1n+2\displaystyle = \ \lim_{n\to\infty} \ \bigg|\frac{x(n+1)}{2(n+2)}\bigg| \ = \ \frac{|x|}{2} \ \lim_{n\to\infty}\bigg|\frac{n+1}{n+2}\bigg|

= x2(1) = x2 < 1 (ratio test).\displaystyle = \ \frac{|x|}{2}(1) \ = \ \frac{|x|}{2} \ < \ 1 \ (ratio \ test).

= x < 2      2< x < 2, therefore converges on (2,2), but what about the endpoints?\displaystyle = \ |x| \ < \ 2 \ \implies \ -2< \ x \ < \ 2, \ therefore \ converges \ on \ (-2,2), \ but \ what \ about \ the \ endpoints?

When x = 2, we have the divergent harmonic series and when x = 2, we have convergent\displaystyle When \ x \ = \ -2, \ we \ have \ the \ divergent \ harmonic \ series \ and \ when \ x \ = \ 2, \ we \ have \ convergent

 alternating series.\displaystyle \ alternating \ series.

Hence, series converges on (2,2 ]. QED\displaystyle Hence, \ series \ converges \ on \ (-2, 2 \ ]. \ QED
 
Glen,

Nice work - but you did not use Q.E.D.!!
 
Top