Consider the following table of values for a function \(\displaystyle j_0(x)\)
\(\displaystyle \begin{array}{c|ccccc} x & \delta_0(x)
\\ \hline 0.0&1.00000\\0.1&.99833\\0.2&.99335\\0.3&.98507\\0.4&.97355\\0.5&.95885\\0.6&.94107\\0.7&.92031\\0.8&.89670\\0.9&.87036\\1.0&.84147\\1.1&.81019\\1.2&.77670\\1.3&.74120
\end{array}\)
What should be the maximum degree of polynomial interpolation used
with the table?
I know that I must use the forward difference table so that I can detect the influence of the rounding errors.
\(\displaystyle \begin{array}{c|ccccc} x & \delta_0(x)
\\ \hline 0.0&1.00000\\0.1&.99833\\0.2&.99335\\0.3&.98507\\0.4&.97355\\0.5&.95885\\0.6&.94107\\0.7&.92031\\0.8&.89670\\0.9&.87036\\1.0&.84147\\1.1&.81019\\1.2&.77670\\1.3&.74120
\end{array}\)
What should be the maximum degree of polynomial interpolation used
with the table?
I know that I must use the forward difference table so that I can detect the influence of the rounding errors.