intergrating sqrootroot(1+sinx)

kpx001

Junior Member
Joined
Mar 6, 2006
Messages
119
what would i sub in to integrate sqrootroot(1+sinx)? the answer should be -cosx/sqroot(1-sinx) but im unsure how this answer was derived. i think its by mutiplying by its conjugate sqroot(1-sinx) but i forgot how to do the algebra for this..
 
Re: intergrating

After a second look, I see.

Let u=1+sin(x),   dx=12uu2du\displaystyle u=1+sin(x), \;\ dx=\frac{1}{\sqrt{2u-u^{2}}}du

Make the subs and get 12udu=22u\displaystyle \int\frac{1}{\sqrt{2-u}}du=-2\sqrt{2-u}

Now, resub u=1+sin(x)\displaystyle u=1+sin(x)

22(1+sin(x))=21sin(x)\displaystyle -2\sqrt{2-(1+sin(x))}=-2\sqrt{1-sin(x)}
 
Hello, kpx001!

1+sinxdx\displaystyle \int \sqrt{1+\sin x}\,dx

\(\displaystyle \text{I think it's by mutiplying by its conjugate: }\:\sqrt{1-\sin x}\quad{\bf\hdots\;Right!}\)

1+sinx11sinx1sinx  =  1sin2 ⁣x1sinx  =  cos2 ⁣x1sinx  =  cosx1sinx\displaystyle \sqrt{\frac{1+\sin x}{1}\cdot{\bf\frac{1-\sin x}{1-\sin x}}} \;=\;\sqrt{\frac{1-\sin^2\!x}{1 - \sin x}} \;=\;\sqrt{\frac{\cos^2\!x}{1-\sin x}} \;=\;\frac{\cos x}{\sqrt{1-\sin x}}


We have:   (1sinx)-12(cosxdx)\displaystyle \text{We have: }\;\int(1-\sin x)^{\text{-}\frac{1}{2}}(\cos x\,dx)

Let u=1sinxdu=cosxdxcosxdx=du\displaystyle \text{Let }\,u \:=\:1-\sin x \quad\Rightarrow\quad du \:=\:-\cos x\,dx \quad\Rightarrow\quad \cos x\,dx \:=\:-du

Substitute:   u-12(du)    =    u-12du    =    2u12+C\displaystyle \text{Substitute: }\;\int u^{\text{-}\frac{1}{2}}(- du) \;\;=\;\; -\int u^{\text{-}\frac{1}{2}}\,du \;\;=\;\;-2u^{\frac{1}{2}} + C

Back-substitute:   21sinx+C\displaystyle \text{Back-substitute: }\;-2\sqrt{1-\sin x} \,+ \,C

 
Top