Intergral help please

nil101

New member
Joined
Oct 16, 2005
Messages
37
I need to evaluate the following. Can you tell me if I'm on the right track?

\(\displaystyle \L \int {\frac{{e^{x + 2} + 4}}{{e^x }}} dx\)


\(\displaystyle \L
= \int {\left( {e^{x + 2} } \right)} \left( {e^{ - x} } \right)dx + \int {4e^{ - x} } dx\)

\(\displaystyle \L = e^2 - 4e^{ - x} + K\)


Thanks for looking
 
One tiny little error. You just forgot the x that goes with the e^2.

Rewrite as:

\(\displaystyle \L\\\int{e^{2}}dx+4\int{e^{-x}}dx\)

=\(\displaystyle \L\\xe^{2}-4e^{-x}+C\)
 
Top