\(\displaystyle Prove \ \int_{0}^{1}f(x)dx \ = \ \int_{0}^{1}f(1-x)dx\)
\(\displaystyle \int_{0}^{1}f(x)dx \ = \ F(1)-F(0), \ FTC \ I\)
\(\displaystyle \int_{0}^{1}f(1-x)dx, \ let \ u \ = \ 1-x, \ then \ du \ = \ -dx \ \implies \ -du \ = \ dx\)
\(\displaystyle \int_{0}^{1}f(1-x)dx \ = \ -\int_{1}^{0}f(u)du \ = \ \int_{0}^{1}f(u)du \ = \ F(1)-F(0)\)
\(\displaystyle Hence, \ \int_{0}^{1}f(x)dx \ = \ \int_{0}^{1}f(1-x)dx, \ QED\)