Integration

Aladdin

Full Member
Joined
Mar 27, 2009
Messages
553
I need some help here guys , please .

Integrat the following :

1x26x+5\displaystyle \int\frac{1}{x^2-6x+5}

My work :

Ax1+Bx5\displaystyle \int \frac{A}{x-1}+\frac{B}{x-5} where A & B must be determined

Now would I say that (A)(x-5) + (B)(x-1) = 1 and calculate A & B

take x as a common factor and set the coeficient equal to zero .... etc

Thanks in advance
Aladdin
 
Aladdin said:
I need some help here guys , please .

Integrat the following :

1x26x+5\displaystyle \int\frac{1}{x^2-6x+5}

My work :

Ax1+Bx5\displaystyle \int \frac{A}{x-1}+\frac{B}{x-5} where A & B must be determined

Now would I say that (A)(x-5) + (B)(x-1) = 1 and calculate A & B

take x as a common factor and set the coeficient equal to zero .... etc

Thanks in advance
Aladdin
There is a short-cut

1x26x+5=Ax1+Bx5\displaystyle \frac{1}{x^2-6x+5} = \frac{A}{x-1} + \frac{B}{x-5}.............................(1)

Multiply both sides by (x-1)

1x5=A+B(x1)x5\displaystyle \frac{1}{x-5}= A + \frac{B(x-1)}{x-5}

Now find the limit of above expression as x ? 1, and we get:

115=A\displaystyle \frac{1}{1-5}= A

A=14\displaystyle A = -\frac{1}{4}

Now to find B, multiply (1) by (x-5) and find the limit as x?5.

This approach will not work in case of repeated roots.
 
Yep, you can do this.

A(x5)+B(x1)=1\displaystyle A(x-5)+B(x-1)=1

Ax5A+BxB=1\displaystyle Ax-5A+Bx-B=1

Equate ceofficeints:

A+B=0\displaystyle A+B=0

5AB=1\displaystyle -5A-B=1

Now,solve that little system and that's it.
 
Thank you ~

Thanks Mr khan , I loved your way but I'll use my way :) ~ Cody's ~
 
dxx26x+5 = [14(x5)14(x1)]dx\displaystyle \int\frac{dx}{x^{2}-6x+5} \ = \ \int\bigg[\frac{1}{4(x-5)}-\frac{1}{4(x-1)}\bigg]^{*}dx

= 14dxx514dxx1 = 14lnx514lnx1+C\displaystyle = \ \frac{1}{4}\int\frac{dx}{x-5}-\frac{1}{4}\int\frac{dx}{x-1} \ = \ \frac{1}{4}ln|x-5|-\frac{1}{4}ln|x-1|+C

= 14lnx5x1+C\displaystyle = \ \frac{1}{4}ln\bigg|\frac{x-5}{x-1}\bigg|+C

 TI89, Expand, to wit: (F23) (1(x26x+5),x) = 14(x5)14(x1)\displaystyle ^{*} \ TI-89, \ Expand, \ to \ wit: \ (F2-3) \ \bigg(\frac{1}{(x^{2}-6x+5)},x\bigg) \ = \ \frac{1}{4(x-5)}-\frac{1}{4(x-1)}
 
Hint: A tip, b a constant, obviously b  0.\displaystyle Hint: \ A \ tip, \ b \ a \ constant, \ obviously \ b \ \ne \ 0.

duu2b      Natural Logarithm Solution, 1u2b can be expanded.\displaystyle \int\frac{du}{u^{2}-b} \ \implies \ Natural \ Logarithm \ Solution, \ \frac{1}{u^{2}-b} \ can \ be \ expanded.

duu2+b      Arctangent Solution, 1u2+b is prime.\displaystyle \int\frac{du}{u^{2}+b} \ \implies \ Arctangent \ Solution, \ \frac{1}{u^{2}+b} \ is \ prime.
 
Top