Hello, xXMARKXx!
A variation of mark's approach . . .
Factor: \(\displaystyle \L\:\int\frac{dx}{x\,+\,
sqrt{x}} \;=\;\int\frac{dx}{\sqrt{x}(\sqrt{x}\,+\,1)}\;=\;\int\frac {x^{-\frac{1}{2}}dx}{\left(x^{\frac{1}{2}}\,+\,1\right)}\)
Now let \(\displaystyle u \:=\:x^{\frac{1}{2}}\,+\,1\;\;\Rightarrow\;\;du \,=\,\frac{1}{2}x^{-\frac{1}{2}}dx\;\;\Rightarrow\;\;x^{-\frac{1}{2}}dx\:=\:2\,du\)
Substitute and we have: \(\displaystyle \L\:2\int\frac{du}{u}\)