integration

naz786

New member
Joined
Dec 15, 2005
Messages
3
the integration of : sec[x]^3 i know the answer just cant figure out how to get there pleaze help
 
OK, here goes:

Let \(\displaystyle u=sec(x)\),\(\displaystyle dv=sec^{2}(x)dx\), \(\displaystyle du=sec(x)tan

(x)dx\), \(\displaystyle v=tan(x)\).


\(\displaystyle \L\int{sec^{3}(x)}dx=sec(x)tan(x)-\int{sec(x)tan^{2}(x)dx}\)

=\(\displaystyle \L\sec(x)tan(x)-\int{sec(x)(sec^{2}(x)-1)dx\)

=\(\displaystyle \L\sec(x)tan(x)-\int{sec^{3}(x)dx}+\int{sec(x)dx\),

\(\displaystyle \L\2\int{sec^{3}(x)dx=sec(x)tan(x)+\int{sec(x)dx\),

Therefore,

\(\displaystyle \L\int{sec^{3}(x)}dx=\frac{1}{2}sec(x)tan(x)+\frac{1}{2}\int{sec(x)dx\)

=\(\displaystyle \L\int{sec^{3}(x)dx=\frac{1}{2}sec(x)tan(x)+\frac{1}{2}ln(|sec(x)+tan(x)|)+C\)
 
Top