Use trigonometric substitution to show that:
∫4−x21dx=41ln∣2−x2+x∣+c
Attempt to solution:
4(1−(2x)2)
let(2x2)=sinθ
x=2sinθ
θ=arcsin(2x)
dx=2cosθdθ
∫4cos2θ12cosθdθ
21∫secθdθ=ln∣secθ+tanθ∣=ln∣sec(arcsin2x)+tan(arcsin2x)∣
Guys l get stuck here how do they end up with : 41ln∣2−x2+x∣+c
∫4−x21dx=41ln∣2−x2+x∣+c
Attempt to solution:
4(1−(2x)2)
let(2x2)=sinθ
x=2sinθ
θ=arcsin(2x)
dx=2cosθdθ
∫4cos2θ12cosθdθ
21∫secθdθ=ln∣secθ+tanθ∣=ln∣sec(arcsin2x)+tan(arcsin2x)∣
Guys l get stuck here how do they end up with : 41ln∣2−x2+x∣+c