Use trigonometric substitution to show that:
\(\displaystyle \int\frac{1}{4-x^2}dx=\frac{1}{4}ln|\frac {2+x}{2-x}|+c\)
Attempt to solution:
\(\displaystyle 4(1-(\frac{x}{2})^2)\)
\(\displaystyle \text{let} (\frac {x}{2}^2)=sin\theta\)
\(\displaystyle x=2sin\theta\)
\(\displaystyle \theta=arcsin(\frac{x}{2})\)
\(\displaystyle dx=2cos\theta d\theta\)
\(\displaystyle \int\frac{1}{4cos^2 \theta}2cos\theta d\theta\)
\(\displaystyle \frac{1}{2}\int sec\theta d\theta=ln|sec\theta+tan\theta|=ln|sec (arcsin\frac{x}{2})+ tan (arcsin\frac{x}{2})|\)
Guys l get stuck here how do they end up with : \(\displaystyle \frac{1}{4}ln|\frac {2+x}{2-x}|+c\)
\(\displaystyle \int\frac{1}{4-x^2}dx=\frac{1}{4}ln|\frac {2+x}{2-x}|+c\)
Attempt to solution:
\(\displaystyle 4(1-(\frac{x}{2})^2)\)
\(\displaystyle \text{let} (\frac {x}{2}^2)=sin\theta\)
\(\displaystyle x=2sin\theta\)
\(\displaystyle \theta=arcsin(\frac{x}{2})\)
\(\displaystyle dx=2cos\theta d\theta\)
\(\displaystyle \int\frac{1}{4cos^2 \theta}2cos\theta d\theta\)
\(\displaystyle \frac{1}{2}\int sec\theta d\theta=ln|sec\theta+tan\theta|=ln|sec (arcsin\frac{x}{2})+ tan (arcsin\frac{x}{2})|\)
Guys l get stuck here how do they end up with : \(\displaystyle \frac{1}{4}ln|\frac {2+x}{2-x}|+c\)