Integration using trig substitution: int 1/(4 - x^2) dx =...

chengeto

New member
Joined
Feb 28, 2009
Messages
49
Use trigonometric substitution to show that:
14x2dx=14ln2+x2x+c\displaystyle \int\frac{1}{4-x^2}dx=\frac{1}{4}ln|\frac {2+x}{2-x}|+c

Attempt to solution:

4(1(x2)2)\displaystyle 4(1-(\frac{x}{2})^2)

let(x22)=sinθ\displaystyle \text{let} (\frac {x}{2}^2)=sin\theta

x=2sinθ\displaystyle x=2sin\theta

θ=arcsin(x2)\displaystyle \theta=arcsin(\frac{x}{2})

dx=2cosθdθ\displaystyle dx=2cos\theta d\theta

14cos2θ2cosθdθ\displaystyle \int\frac{1}{4cos^2 \theta}2cos\theta d\theta

12secθdθ=lnsecθ+tanθ=lnsec(arcsinx2)+tan(arcsinx2)\displaystyle \frac{1}{2}\int sec\theta d\theta=ln|sec\theta+tan\theta|=ln|sec (arcsin\frac{x}{2})+ tan (arcsin\frac{x}{2})|

Guys l get stuck here how do they end up with : 14ln2+x2x+c\displaystyle \frac{1}{4}ln|\frac {2+x}{2-x}|+c
 
Re: Integration using trig substitution

That is a matter of knowing the trig inverses, such as

sec(sin1(x2))=2(2x)(x+2)\displaystyle sec(sin^{-1}(\frac{x}{2}))=\frac{2}{\sqrt{(2-x)(x+2)}} and tan(sin1(x2))=x(2x)(x+2)\displaystyle tan(sin^{-1}(\frac{x}{2}))=\frac{x}{\sqrt{(2-x)(x+2)}}

12ln(2(2x)(x+2)+x(2x)(x+2))=12ln(x+24x2)\displaystyle \frac{1}{2}ln\left(\frac{2}{\sqrt{(2-x)(x+2)}}+\frac{x}{\sqrt{(2-x)(x+2)}}\right)=\frac{1}{2}ln(\frac{x+2}{\sqrt{4-x^{2}}})

=12[ln(x+2)12ln((2x)(x+2))]=12[ln(x+2)12ln(2x)+12ln(2+x)]\displaystyle =\frac{1}{2}\left[ln(x+2)-\frac{1}{2}ln((2-x)(x+2))\right]=\frac{1}{2}\left[ln(x+2)-\frac{1}{2}ln(2-x)+\frac{1}{2}ln(2+x)\right]

=14[ln(x+2)ln(2x)]\displaystyle =\frac{1}{4}\left[ln(x+2)-ln(2-x)\right]

=14ln(x+22x)\displaystyle =\frac{1}{4}ln(\frac{x+2}{2-x})


Your work looked good.
 
Re: Integration using trig substitution

I don't know why did your problem specifically asked for trig. substitution. Without that, the problem is much simpler:

14x2  =  14[12+x+12x]\displaystyle \frac{1}{4-x^2} \, \, = \, \, \frac{1}{4}\cdot [\frac{1}{2+x} \, + \, \frac{1}{2-x}]
 
Re: Integration using trig substitution

Yes indeed, that's probably why they wanted trig sub.
 
Re: Integration using trig substitution



I could have used partial fraction decomposition but the question said you should only use trig substitution.
 
Re: Integration using trig substitution

galactus said:
That is a matter of knowing the trig inverses, such as

sec(sin1(x2))=2(2x)(x+2)\displaystyle sec(sin^{-1}(\frac{x}{2}))=\frac{2}{\sqrt{(2-x)(x+2)}} and tan(sin1(x2))=x(2x)(x+2)\displaystyle tan(sin^{-1}(\frac{x}{2}))=\frac{x}{\sqrt{(2-x)(x+2)}}

12ln(2(2x)(x+2)+x(2x)(x+2))=12ln(x+24x2)\displaystyle \frac{1}{2}ln\left(\frac{2}{\sqrt{(2-x)(x+2)}}+\frac{x}{\sqrt{(2-x)(x+2)}}\right)=\frac{1}{2}ln(\frac{x+2}{\sqrt{4-x^{2}}})

=12[ln(x+2)12ln((2x)(x+2))]=12[ln(x+2)12ln(2x)+12ln(2+x)]\displaystyle =\frac{1}{2}\left[ln(x+2)-\frac{1}{2}ln((2-x)(x+2))\right]=\frac{1}{2}\left[ln(x+2)-\frac{1}{2}ln(2-x)+\frac{1}{2}ln(2+x)\right]

=14[ln(x+2)ln(2x)]\displaystyle =\frac{1}{4}\left[ln(x+2)-ln(2-x)\right]

=14ln(x+22x)\displaystyle =\frac{1}{4}ln(\frac{x+2}{2-x})


Your work looked good.

Thanks very much for the help but l would like to know how you got this :

12[ln(x+2)12ln((2x)(x+2)]\displaystyle \frac{1}{2}\left[ln(x+2)-\frac{1}{2}ln((2-x)(x+2)\right]
 
Re: Integration using trig substitution

I just factored 4x2\displaystyle 4-x^{2} and used the log laws.

4x2=(2x)(2+x)\displaystyle 4-x^{2}=(2-x)(2+x)

(2x)(2+x)=((2x)(2+x))12\displaystyle \sqrt{(2-x)(2+x)}=((2-x)(2+x))^{\frac{1}{2}}

ln(((2x)(2+x))12)=12ln((2x)(2+x))\displaystyle ln(((2-x)(2+x))^{\frac{1}{2}})=\frac{1}{2}ln((2-x)(2+x))
 
Top