Hello, ChaoticLlama!
\(\displaystyle \L\int {\frac{{\sqrt {1 + 4x^2 } }}{{x^4 }}} dx\)
I've been trying \(\displaystyle x\,=\,2\tan \theta\) without much success.
Of course not!
Then \(\displaystyle \,1\,+\,4x^2\:=\:1\,+\,16\tan^2\theta\) . . . and what good is that?
You should have begun with: \(\displaystyle \,4x^2\,=\,\tan^2\theta\;\;\Rightarrow\;\;x\,=\,\frac{1}{2}\tan\theta\;\;\Rightarrow\;\;dx\,=\,\frac{1}{2}\sec^2\theta\ d\theta\)
Substitute: \(\displaystyle \L\,\int\frac{\sec\theta}{\frac{1}{16}\tan^4\theta}\cdot\left(\frac{1}{2}\sec^2\theta\ d\theta\right) \;= \;8\int\frac{\sec^3\theta}{\tan^4\theta}\ d\theta\)
Multiply top and bottom by \(\displaystyle \cos^4\theta:\)
\(\displaystyle \L\;\;8\int\frac{\cos\theta}{\sin^4\theta}\ d\theta \;= \;8\int(\sin\theta)^{-4}\cos\theta\ d\theta\)
Let \(\displaystyle u\,=\,\sin\theta\) . . . and you're on your way!