integration techniques

intervade

New member
Joined
Apr 6, 2009
Messages
49
Hello, I'm working on a problem that I'm not sure where to start, maybe someone could point me in the right direction.

2yl1p8z.gif
 
One way to do it is good ol' trig sub.

Let x=32tanθ,   32sec2θdθ\displaystyle x=\frac{3}{2}tan{\theta}, \;\ \frac{3}{2}sec^{2}{\theta}d{\theta}

Making the subs and simplifying gives:

316sin3θcos2θdθ\displaystyle \frac{3}{16}\int\frac{sin^{3}{\theta}}{cos^{2}{\theta}}d{\theta}

Let u=cosθ,   du=sinθdθ\displaystyle u=cos{\theta}, \;\ -du=sin{\theta}d{\theta}

Make the subs and remember the identity sin2θ=1cos2θ\displaystyle sin^{2}{\theta}=1-cos^{2}{\theta}

316du3161u2du\displaystyle \frac{3}{16}\int du-\frac{3}{16}\int \frac{1}{u^{2}}du

Integrate and resub
 
You would not have to re-sub, if you change your limits along with your variables.
 
Subhotosh Khan said:
You would not have to re-sub, if you change your limits along with your variables.


Yes, of course. That is the best thing to do.
 
Another way: Stealing galactuss thunder, we have:\displaystyle Another \ way: \ Stealing \ galactus's \ thunder, \ we \ have:

3160π/3sin3(θ)cos2(θ)dθ = 3160π/3sin(θ)sin2(θ)cos2(θ)dθ\displaystyle \frac{3}{16}\int_{0}^{\pi/3}\frac{sin^{3}(\theta)}{cos^{2}(\theta)}d\theta \ = \ \frac{3}{16}\int_{0}^{\pi/3}\frac{sin(\theta)sin^{2}(\theta)}{cos^{2}(\theta)}d\theta

= 3160π/3sin(θ)[1cos2(θ)]cos2(θ)dθ = 3160π/3sin(θ)sin(θ)cos2(θ)cos2(θ)dθ\displaystyle = \ \frac{3}{16}\int_{0}^{\pi/3}\frac{sin(\theta)[1-cos^{2}(\theta)]}{cos^{2}(\theta)}d\theta \ = \ \frac{3}{16}\int_{0}^{\pi/3}\frac{sin(\theta)-sin(\theta)cos^{2}(\theta)}{cos^{2}(\theta)}d\theta

= 3160π/3sin(θ)cos2(θ)dθ  3160π/3sin(θ)dθ\displaystyle = \ \frac{3}{16}\int_{0}^{\pi/3}\frac{sin(\theta)}{cos^{2}(\theta)}d\theta \ - \ \frac{3}{16}\int_{0}^{\pi/3}sin(\theta)d\theta

I trust that whoever is interested, can take it from here.\displaystyle I \ trust \ that \ whoever \ is \ interested, \ can \ take \ it \ from \ here.
 
Top