One way to do it is good ol' trig sub.
Let \(\displaystyle x=\frac{3}{2}tan{\theta}, \;\ \frac{3}{2}sec^{2}{\theta}d{\theta}\)
Making the subs and simplifying gives:
\(\displaystyle \frac{3}{16}\int\frac{sin^{3}{\theta}}{cos^{2}{\theta}}d{\theta}\)
Let \(\displaystyle u=cos{\theta}, \;\ -du=sin{\theta}d{\theta}\)
Make the subs and remember the identity \(\displaystyle sin^{2}{\theta}=1-cos^{2}{\theta}\)
\(\displaystyle \frac{3}{16}\int du-\frac{3}{16}\int \frac{1}{u^{2}}du\)
Integrate and resub