In the following case use the given substitution to show that :
\(\displaystyle \int\sqrt(1+\sqrt x)=\frac{4}{15}(1+\sqrt x)^\frac{3}{2}(3\sqrt x-2)+c\)
\(\displaystyle u^2=1+\sqrt x\)
\(\displaystyle u=\sqrt(1+\sqrt x)\)
My attempt to solution:
\(\displaystyle u=\sqrt(1+\sqrt x)\)
\(\displaystyle du=\frac{1}{2\sqrt(1+\sqrt x )}.\frac{1}{2\sqrt x} dx\)
\(\displaystyle du=\frac{1}{4\sqrt(1+\sqrt x)(\sqrt x)}dx\)
I get stuck here l do not know how to substitute for du
\(\displaystyle \int\sqrt(1+\sqrt x)=\frac{4}{15}(1+\sqrt x)^\frac{3}{2}(3\sqrt x-2)+c\)
\(\displaystyle u^2=1+\sqrt x\)
\(\displaystyle u=\sqrt(1+\sqrt x)\)
My attempt to solution:
\(\displaystyle u=\sqrt(1+\sqrt x)\)
\(\displaystyle du=\frac{1}{2\sqrt(1+\sqrt x )}.\frac{1}{2\sqrt x} dx\)
\(\displaystyle du=\frac{1}{4\sqrt(1+\sqrt x)(\sqrt x)}dx\)
I get stuck here l do not know how to substitute for du