\(\displaystyle \int \frac{(1-x^{1/2})^{3}}{x^{1/2}}dx \ Now \ let \ u \ = \ x^{1/2}, \ u^{2} \ = \ x, \ and \ 2udu \ = \ dx.\)
\(\displaystyle Ergo, \ we \ have \ \int \frac{(1-u)^{3}2u}{u}du \ = \ 2\int(1-u)^{3}du\)
\(\displaystyle Expanding \ the \ binomial, \ we \ get \ 2\int(-u^{3}+3u^{2}-3u+1)du\)
\(\displaystyle which \ equals \ 2[\frac{-u^{4}}{4}+u^{3}-\frac{3u^{2}}{2}+u]+ \ C = \ \frac{-u^{4}}{2}+2u^{3}-3u^{2}+2u \ +C.\)
\(\displaystyle Hence, \ resubstituting, \ we \ get \ -\frac{x^{2}}{2}+2x^{3/2}-3x+2x^{1/2} + \ C \ or \ -[\frac{x^{2}}{2}-2x^{3/2}+3x-2x^{1/2}] \ +C.\)
Addendum: x must be greater than zero.