\(\displaystyle \int \dfrac{5x - 2}{\sqrt{x^{2} + 2x}} dx \)
Wanting to convert to the form:
\(\displaystyle u^{n}du = \dfrac{u^{n + 1}}{n + 1} + C \) and \(\displaystyle \int \dfrac{du}{\sqrt u^{2} - a^{2}} = \ln| u + \sqrt{u^{2} - a^{2}}| + C \)
Here is what the book says:
Arrange numerator in the following manner:
\(\displaystyle \int \dfrac{5x - 2}{\sqrt{x^{2} + 2x}} dx = \dfrac{5}{2} \int \dfrac{2x - 4/5 dx}{\sqrt{x^{2} + 2x}}\)
What's going on here?
\(\displaystyle \dfrac{5}{2} \int \dfrac{(2x + 2)2x } {\sqrt{x^{2} + 2x}} dx - (\dfrac{5}{2})* (\dfrac{4}{15}) \int \dfrac{dx} {\sqrt{x^{2} + 2x}}\)
I understand the next part of the problem (based on given information from the book):
\(\displaystyle \dfrac{5}{2}\int (x^{2} + 2x)^{-1/2} (2x + 2) dx - 7 \int \dfrac{dx}{\sqrt{(x + 1)^{2} - 1^{2}}}\)
\(\displaystyle 5\sqrt{x^{2} + 2x} - 7\ln|x + 1 + \sqrt{x^{2} + 2x}| + C\) - Final Answer
Wanting to convert to the form:
\(\displaystyle u^{n}du = \dfrac{u^{n + 1}}{n + 1} + C \) and \(\displaystyle \int \dfrac{du}{\sqrt u^{2} - a^{2}} = \ln| u + \sqrt{u^{2} - a^{2}}| + C \)
Here is what the book says:
Arrange numerator in the following manner:
\(\displaystyle \int \dfrac{5x - 2}{\sqrt{x^{2} + 2x}} dx = \dfrac{5}{2} \int \dfrac{2x - 4/5 dx}{\sqrt{x^{2} + 2x}}\)
\(\displaystyle \dfrac{5}{2} \int \dfrac{(2x + 2)2x } {\sqrt{x^{2} + 2x}} dx - (\dfrac{5}{2})* (\dfrac{4}{15}) \int \dfrac{dx} {\sqrt{x^{2} + 2x}}\)
I understand the next part of the problem (based on given information from the book):
\(\displaystyle \dfrac{5}{2}\int (x^{2} + 2x)^{-1/2} (2x + 2) dx - 7 \int \dfrac{dx}{\sqrt{(x + 1)^{2} - 1^{2}}}\)
\(\displaystyle 5\sqrt{x^{2} + 2x} - 7\ln|x + 1 + \sqrt{x^{2} + 2x}| + C\) - Final Answer
Last edited: