Hello, Lizzy!
To find the integral of (cos 2x) / (1 + cos 2x)<sup>1/2</sup> dx, use (as the previous tutor suggested) the fact that cos 2x = 2 cos<sup>2</sup> - 1:
(cos 2x) / (1 + cos 2x)<sup>1/2</sup>
. . .= ( 2 cos<sup>2</sup> x - 1 ) / ( 2 cos<sup>2</sup> x )<sup>1/2</sup>
. . .= ( 2 cos<sup>2</sup> x - 1 ) / 2<sup>1/2</sup> cos x
. . .= ( 2 cos<sup>2</sup> x ) / ( 2<sup>1/2</sup> cos x )- 1 / ( 2<sup>1/2</sup>cos x )
. . .= 2<sup>1/2</sup> cos x - 2<sup>1/2</sup> sec x
integral ( 2<sup>1/2</sup> cos x - 2<sup>1/2</sup> sec x ) dx
. . .= 2<sup>1/2</sup> sin x - 2<sup>1/2</sup> ln | sec x + tan x | + C
If you have questions, please reply. Thank you! :wink: