Integration Problem: int (cos 2x) / (1+cos 2x)^1/2 dx

Lizzy

New member
Joined
Jan 11, 2007
Messages
10
I need help with this integral:

The integral of (cos 2x) / (1+cos 2x)^1/2 dx

Thanks for helping out.
 
Re: Integration Problem

Lizzy said:
I need help with this integral:

The integral of (cos 2x) / (1+cos 2x)^1/2 dx

Thanks for helping out.

Use that cos(2x) = 2 cos^2(x) -1
 
Hello, Lizzy!

To find the integral of (cos 2x) / (1 + cos 2x)<sup>1/2</sup> dx, use (as the previous tutor suggested) the fact that cos 2x = 2 cos<sup>2</sup> - 1:

(cos 2x) / (1 + cos 2x)<sup>1/2</sup>

. . .= ( 2 cos<sup>2</sup> x - 1 ) / ( 2 cos<sup>2</sup> x )<sup>1/2</sup>

. . .= ( 2 cos<sup>2</sup> x - 1 ) / 2<sup>1/2</sup> cos x

. . .= ( 2 cos<sup>2</sup> x ) / ( 2<sup>1/2</sup> cos x )- 1 / ( 2<sup>1/2</sup>cos x )

. . .= 2<sup>1/2</sup> cos x - 2<sup>1/2</sup> sec x

integral ( 2<sup>1/2</sup> cos x - 2<sup>1/2</sup> sec x ) dx

. . .= 2<sup>1/2</sup> sin x - 2<sup>1/2</sup> ln | sec x + tan x | + C

If you have questions, please reply. Thank you! :wink:
 
Re: Integration Problem

Hello, Lizzy!

\(\displaystyle \L\int \frac{\cos2x}{\sqrt{1\,+\,\cos2x}}\,dx\)

Identity:
. . \(\displaystyle \cos^2x\:=\:\frac{1\.+\,\cos2x}{2}\;\;\Rightarrow\;\;\cos2x \:=\:2\cdot\cos^2x\,-\,1 \;\;\Rightarrow\;\;1\,+\,\cos 2x\:=\:2\cdot\cos^2x\)

The integral becomes: \(\displaystyle \L\:\int\frac{2\cdot\cos^2x\,-\,1}{\sqrt{2\cdot\cos^2x}}\,dx\:=\:\frac{1}{\sqrt{2}}\int\frac{2\cdot\cos^2x\,-\,1}{\cos x}\,dx\)

And we have: \(\displaystyle \:\frac{\sqrt{2}}{2}\L\int\)\(\displaystyle (2\cdot\cos x\,-\,\sec x)\,dx\;=\;\frac{\sqrt{2}}{2}\left(2\cdot\sin x\,-\,\ln|\sec x\,+\,\tan x|\right)\,+\,C\)



Edit: I just noticed that this is Dora's solution . . .
 
Top