\(\displaystyle \int sin^2xcos^4xdx\)
\(\displaystyle \int(1-cos^2x)(cos^4x)\)
\(\displaystyle \int(cos^4x-cos^6x)dx\)
\(\displaystyle \cos^2 x = \frac {1 + \cos 2x}2\)
\(\displaystyle \frac{1}{2}\int cos^4xdx-\frac{1}{2}\int cos^6xdx\)
\(\displaystyle \frac{1}{8}\int (1+cos2x)^2-\frac{1}{16}\int(1+cos2x)^3\)
I'm stuck here because it seems as if l am chasing my tail.
\(\displaystyle \int(1-cos^2x)(cos^4x)\)
\(\displaystyle \int(cos^4x-cos^6x)dx\)
\(\displaystyle \cos^2 x = \frac {1 + \cos 2x}2\)
\(\displaystyle \frac{1}{2}\int cos^4xdx-\frac{1}{2}\int cos^6xdx\)
\(\displaystyle \frac{1}{8}\int (1+cos2x)^2-\frac{1}{16}\int(1+cos2x)^3\)
I'm stuck here because it seems as if l am chasing my tail.