Integration of trig functions: int sin^2 x cos^4 x dx

chengeto

New member
Joined
Feb 28, 2009
Messages
49
sin2xcos4xdx\displaystyle \int sin^2xcos^4xdx

(1cos2x)(cos4x)\displaystyle \int(1-cos^2x)(cos^4x)

(cos4xcos6x)dx\displaystyle \int(cos^4x-cos^6x)dx

cos2x=1+cos2x2\displaystyle \cos^2 x = \frac {1 + \cos 2x}2

12cos4xdx12cos6xdx\displaystyle \frac{1}{2}\int cos^4xdx-\frac{1}{2}\int cos^6xdx

18(1+cos2x)2116(1+cos2x)3\displaystyle \frac{1}{8}\int (1+cos2x)^2-\frac{1}{16}\int(1+cos2x)^3

I'm stuck here because it seems as if l am chasing my tail.
 
Re: Integration of trig functions

sin2(x)cos4(x)dx\displaystyle \int sin^{2}(x)cos^{4}(x)dx

=18(1cos(2x))(1+cos(2x))2dx\displaystyle =\frac{1}{8}\int (1-cos(2x))(1+cos(2x))^{2}dx

=18(1cos2(2x))(1+cos(2x))dx\displaystyle =\frac{1}{8}\int (1-cos^{2}(2x))(1+cos(2x))dx

=18sin2(2x)dx+18sin2(2x)cos(2x)dx\displaystyle =\frac{1}{8}\int sin^{2}(2x)dx+\frac{1}{8}\int sin^{2}(2x)cos(2x)dx

=116(1cos(4x))dx+148sin3(2x)\displaystyle =\frac{1}{16}\int (1-cos(4x))dx+\frac{1}{48}sin^{3}(2x)

=116x164sin(4x)+148sin3(2x)+C\displaystyle \boxed{=\frac{1}{16}x-\frac{1}{64}sin(4x)+\frac{1}{48}sin^{3}(2x)+C}
 
Re: Integration of trig functions

galactus said:
sin2(x)cos4(x)dx\displaystyle \int sin^{2}(x)cos^{4}(x)dx

=18(1cos(2x))(1+cos(2x))2dx\displaystyle =\frac{1}{8}\int (1-cos(2x))(1+cos(2x))^{2}dx

=18(1cos2(2x))(1+cos(2x))dx\displaystyle =\frac{1}{8}\int (1-cos^{2}(2x))(1+cos(2x))dx

=18sin2(2x)dx+18sin2(2x)cos(2x)dx\displaystyle =\frac{1}{8}\int sin^{2}(2x)dx+\frac{1}{8}\int sin^{2}(2x)cos(2x)dx

=116(1cos(4x))dx+148sin3(2x)\displaystyle =\frac{1}{16}\int (1-cos(4x))dx+\frac{1}{48}sin^{3}(2x)

=116x164sin(4x)+148sin3(2x)+C\displaystyle \boxed{=\frac{1}{16}x-\frac{1}{64}sin(4x)+\frac{1}{48}sin^{3}(2x)+C}

Galactus how did you get :


\(\displaystyle \frac{1}{48}sin^{3}(2x)+C}\)
 
Top