\(\displaystyle After \ looking \ over \ your \ thread, \ I \ am \ assuming \ (knowing \ a \ mere \ assumption \ is \ no \ proof) \ that\)
\(\displaystyle you \ meant, \ to \ wit: \ \int_{0}^{\infty}\lambda e^{-\lambda y}dy. \ If \ I'm \ correct, \ we \ will \ proceed \ as \ follows:\)
\(\displaystyle \int_{0}^{\infty}\lambda e^{-\lambda y}dy \ = \ \lim_{b\to\infty}\lambda \int_{0}^{b}e^{-\lambda y}dy, \ \lambda \ > \ 0.\)
\(\displaystyle = \ \lambda \lim_{b\to\infty}-\frac{e^{-\lambda y}}{\lambda}\bigg]_{0}^{b}\)
\(\displaystyle = \ \lim_{b\to\infty}\frac{-1}{e^{\lambda y}}\bigg]_{0}^{b} \ = \ \lim_{b\to\infty}\bigg[\frac{-1}{e^{\lambda b}}-\frac{-1}{1}\bigg] \ = \ 1\)