Integration E(y^2)

rbcc

Junior Member
Joined
Nov 18, 2009
Messages
126
HI,

I'm haveing trouble with this question can some one check this over?

\(\displaystyle \int^{a+b}_{a-b} y^{2} \frac{1}{2b} \dy\)\(\displaystyle dy\)
.
\(\displaystyle \frac{1}{3}y^{3} \frac{1}{2b}]_{a-b}^{a+b}\)

\(\displaystyle \frac {a^{3}+3a^{2}b+3ab^{2}+b^{3}-a^{3}+3a^{2}b-3ab^{2}+b^{2}}{3}\)...\(\displaystyle \frac{1}{2b}\)
.
\(\displaystyle \frac {6a^{2}b+b^{3}}{3}\)...\(\displaystyle \frac{1}{2b}\)
.
\(\displaystyle \frac {6a^{2}b+b^{3}}{6b}\)
.
\(\displaystyle a^{2}+\frac {b^{2}}{6}\)

thanks!
 
You almost have it. It should be \(\displaystyle a^{2}+\frac{b^{2}}{\boxed{3}}\)
 
\(\displaystyle See \ my \ attachment.\)


[attachment=0:65ezzxie]SCREEN01.JPG[/attachment:65ezzxie]
 

Attachments

  • SCREEN01.JPG
    SCREEN01.JPG
    30.7 KB · Views: 121
Top