HI,
I'm haveing trouble with this question can some one check this over?
\(\displaystyle \int^{a+b}_{a-b} y^{2} \frac{1}{2b} \dy\)\(\displaystyle dy\)
.
\(\displaystyle \frac{1}{3}y^{3} \frac{1}{2b}]_{a-b}^{a+b}\)
\(\displaystyle \frac {a^{3}+3a^{2}b+3ab^{2}+b^{3}-a^{3}+3a^{2}b-3ab^{2}+b^{2}}{3}\)...\(\displaystyle \frac{1}{2b}\)
.
\(\displaystyle \frac {6a^{2}b+b^{3}}{3}\)...\(\displaystyle \frac{1}{2b}\)
.
\(\displaystyle \frac {6a^{2}b+b^{3}}{6b}\)
.
\(\displaystyle a^{2}+\frac {b^{2}}{6}\)
thanks!
I'm haveing trouble with this question can some one check this over?
\(\displaystyle \int^{a+b}_{a-b} y^{2} \frac{1}{2b} \dy\)\(\displaystyle dy\)
.
\(\displaystyle \frac{1}{3}y^{3} \frac{1}{2b}]_{a-b}^{a+b}\)
\(\displaystyle \frac {a^{3}+3a^{2}b+3ab^{2}+b^{3}-a^{3}+3a^{2}b-3ab^{2}+b^{2}}{3}\)...\(\displaystyle \frac{1}{2b}\)
.
\(\displaystyle \frac {6a^{2}b+b^{3}}{3}\)...\(\displaystyle \frac{1}{2b}\)
.
\(\displaystyle \frac {6a^{2}b+b^{3}}{6b}\)
.
\(\displaystyle a^{2}+\frac {b^{2}}{6}\)
thanks!