T_TEngineer_AdamT_T
New member
- Joined
- Apr 15, 2007
- Messages
- 24
\(\displaystyle \L \int \frac{x^2}{\sqrt{x^2+6}}dx\)
Let \(\displaystyle \L x = \sqrt{6}\tan{\theta}\)
\(\displaystyle \L dx = \sqrt{6}\sec^{2}{\theta}\)
\(\displaystyle \L \int \frac{6\tan^2{\theta}(\sqrt{6}\sec^2{\theta})}{\sqrt{6\sec^2{\theta})\)
\(\displaystyle \L \int 6\tan^2{\theta}\sec{\theta}d\theta\)
\(\displaystyle \L 6\int (\sec^2{\theta} - 1)\sec{\theta}d{\theta}\)
\(\displaystyle \L 6\int (\sec^3{\theta} - \sec{\theta})d{\theta}\)
\(\displaystyle \L 6\int (\sec^3{\theta}d{\theta} - 6ln|\sec{\theta} + \tan{\theta}|\)
Integrating by parts for \(\displaystyle \L sec^3{theta}\), this becomes:
\(\displaystyle \L \int \sec^3{\theta} = 3\sec{\theta}\tan{\theta} + \frac{1}{2}ln|\sec{\theta} + \tan{\theta}|\)
To continue:
\(\displaystyle \L =3\sec{\theta}\tan{\theta} + \frac{1}{2}ln|\sec{\theta} + \tan{\theta}|-6ln|\sec{\theta} + \tan{\theta}|\)
\(\displaystyle \L =3\sec{\theta}\tan{\theta} - \frac{11}{2}ln|\sec{\theta}+\tan{\theta}|\)
I draw a triangle and obtain the values of x. This becomes:
\(\displaystyle \L \frac{1}{2}x{\sqrt{x^2+6}} - \frac{11}{2}ln|\frac{\sqrt{x^2+6}+x}{\sqrt{6}}|\)
Is my answer correct?
Let \(\displaystyle \L x = \sqrt{6}\tan{\theta}\)
\(\displaystyle \L dx = \sqrt{6}\sec^{2}{\theta}\)
\(\displaystyle \L \int \frac{6\tan^2{\theta}(\sqrt{6}\sec^2{\theta})}{\sqrt{6\sec^2{\theta})\)
\(\displaystyle \L \int 6\tan^2{\theta}\sec{\theta}d\theta\)
\(\displaystyle \L 6\int (\sec^2{\theta} - 1)\sec{\theta}d{\theta}\)
\(\displaystyle \L 6\int (\sec^3{\theta} - \sec{\theta})d{\theta}\)
\(\displaystyle \L 6\int (\sec^3{\theta}d{\theta} - 6ln|\sec{\theta} + \tan{\theta}|\)
Integrating by parts for \(\displaystyle \L sec^3{theta}\), this becomes:
\(\displaystyle \L \int \sec^3{\theta} = 3\sec{\theta}\tan{\theta} + \frac{1}{2}ln|\sec{\theta} + \tan{\theta}|\)
To continue:
\(\displaystyle \L =3\sec{\theta}\tan{\theta} + \frac{1}{2}ln|\sec{\theta} + \tan{\theta}|-6ln|\sec{\theta} + \tan{\theta}|\)
\(\displaystyle \L =3\sec{\theta}\tan{\theta} - \frac{11}{2}ln|\sec{\theta}+\tan{\theta}|\)
I draw a triangle and obtain the values of x. This becomes:
\(\displaystyle \L \frac{1}{2}x{\sqrt{x^2+6}} - \frac{11}{2}ln|\frac{\sqrt{x^2+6}+x}{\sqrt{6}}|\)
Is my answer correct?