They all lend themselves to trigsubs!
1.
\(\displaystyle \int{5x(1-x^2)^{\frac{1}{3}}dx\)
\(\displaystyle Right-angled\ triangle,\ perpendicular\ sides\ \sqrt{1-x^2}\ and\ x,\)
\(\displaystyle hypotenuse=1,\ \theta\ either\ of\ the\ two\ acute\ angles.\)
\(\displaystyle Sin\theta\ or\ Cos\alpha=x,\ choose\ Sin\theta=x.\)
\(\displaystyle \frac{dx}{d\theta}=Cos\theta,\ dx=Cos\theta d\theta\)
\(\displaystyle 1-x^2=1-Sin^{2}\theta=Cos^{2}\theta\)
\(\displaystyle 5\int[Cos^{2}\theta]^{\frac{1}{3}}Cos\theta Sin\theta d\theta=5\int{Cos^{\frac{5}{3}}\theta Sin\theta d\theta\)
\(\displaystyle Substitute\ Cos\theta=u,\ \frac{du}{d\theta}=-Sin\theta,\ -du=Sin\theta d\theta\)
\(\displaystyle -5\int{u^{\frac{5}{3}}du=-5\frac{u^{\frac{8}{3}}}{\frac{8}{3}}+C=-5\frac{Cos^{\frac{8}{3}}\theta}{\frac{8}{3}}+C\)
\(\displaystyle =-\frac{15}{8}(\sqrt{1-x^2})^{\frac{8}{3}}+C=-\frac{15}{8}(1-x^2)^{\frac{1}{2}\frac{8}{3}}+C=-\frac{15}{8}(1-x^2)^{\frac{4}{3}}+C\)
Using basic substitutions,
\(\displaystyle \int{5x(1-x^2)^{\frac{1}{3}}dx\)
\(\displaystyle u=1-x^2,\ \frac{du}{dx}=-2x,\ -\frac{5}{2}du=5xdx\)
\(\displaystyle -\frac{5}{2}\int{u^{\frac{1}{3}}du=-\frac{5}{2}\frac{u^{\frac{4}{3}}}{\frac{4}{3}}+C=-\frac{15}{8}(1-x^2)^{\frac{4}{3}}+C\)
3.
\(\displaystyle \int{(1+\frac{1}{t})^{3}(\frac{1}{t^2})dt\)
\(\displaystyle Right-angled\ triangle,\ \theta=acute\ angle,\ \sqrt{1+\frac{1}{t}}=hypotenuse,\ \sqrt{\frac{1}{t}}=adjacent,\ 1=opposite.\)
\(\displaystyle Sin^2 \theta=\frac{1}{1+\frac{1}{t}},\ \frac{1}{Sin^{2}\theta}=1+\frac{1}{t}=Sec^2 \theta\)
\(\displaystyle \frac{d}{dt}Sec^2 \theta=-\frac{1}{t^2}\)
\(\displaystyle -\int{(Sec^2 \theta)^3 dSec^2 \theta=-\int{u^{3}du=-\frac{u^4}{4}+C=-\frac{Sec^8 \theta}{4}+C\)
\(\displaystyle =-\frac{1}{4}(1+\frac{1}{t})^4+C\)
Using basic substitutions,
\(\displaystyle u=1+\frac{1}{t},\ \frac{du}{dt}=-\frac{1}{t^2}\)
\(\displaystyle -\int{u^{3}du=-\frac{u^4}{4}+C=-\frac{1}{4}(1+\frac{1}{t})^4+C\)