integration by substitution-messy problem!

crzymath

New member
Joined
Oct 27, 2008
Messages
28
problem asks to integrate by substitution
this is what i have:

?x[sup:2svmhf2k]3[/sup:2svmhf2k](x[sup:2svmhf2k]4[/sup:2svmhf2k]+3)[sup:2svmhf2k]2[/sup:2svmhf2k]dx

u = x[sup:2svmhf2k]4[/sup:2svmhf2k] + 3
du/dx = 4x --> du = 4xdx

now i substitue it back in:
= ?x[sup:2svmhf2k]3[/sup:2svmhf2k](u[sup:2svmhf2k]2[/sup:2svmhf2k]) du
= 1/4 ? 3x[sup:2svmhf2k]2[/sup:2svmhf2k]/2 (2u[sup:2svmhf2k]3[/sup:2svmhf2k]/3) dx

this is where i get confused because i think i messed it up since the answer is suppose to be: (x[sup:2svmhf2k]4[/sup:2svmhf2k]+ 3)[sup:2svmhf2k]3[/sup:2svmhf2k]/12 + C

any clue where i went wrong? :(
 
crzymath said:
problem asks to integrate by substitution
this is what i have:

?x[sup:3gmmdfgg]3[/sup:3gmmdfgg](x[sup:3gmmdfgg]4[/sup:3gmmdfgg]+3)[sup:3gmmdfgg]2[/sup:3gmmdfgg]dx

u = x[sup:3gmmdfgg]4[/sup:3gmmdfgg] + 3
du/dx = 4x --> du = 4xdx<<<< Incorrect

du/dx = 4 * x[sup:3gmmdfgg]3[/sup:3gmmdfgg]

Now it should be simpler


now i substitue it back in:
= ?x[sup:3gmmdfgg]3[/sup:3gmmdfgg](u[sup:3gmmdfgg]2[/sup:3gmmdfgg]) du
= 1/4 ? 3x[sup:3gmmdfgg]2[/sup:3gmmdfgg]/2 (2u[sup:3gmmdfgg]3[/sup:3gmmdfgg]/3) dx

this is where i get confused because i think i messed it up since the answer is suppose to be: (x[sup:3gmmdfgg]4[/sup:3gmmdfgg]+ 3)[sup:3gmmdfgg]3[/sup:3gmmdfgg]/12 + C

any clue where i went wrong? :(
 
Hello, crzymath!

I'll baby-step through it for you . . .


Integrate by substitution:   x3(x4+3)2dx\displaystyle \text{Integrate by substitution: }\;\int x^3(x^4+3)^2\,dx

Let: u=x4+3du=4x3dxx3dx=du4\displaystyle \text{Let: }\:u \:=\:x^4+3 \quad\Rightarrow\quad du \:=\:4x^3\,dx \quad\Rightarrow\quad x^3\,dx \:=\:\frac{du}{4}

We have:     (x4+3)2(x3dx)\displaystyle \text{We have: }\;\;\int\underbrace{(x^4+3)^2}_{\downarrow}\underbrace{(x^3\,dx)}_{\downarrow}

Substitute:         u2    (du4)    =    14u2du    =    112u3+C\displaystyle \text{Substitute: }\;\;\int \;\;u^2\quad\;\;\left(\frac{du}{4}\right) \;\;=\;\;\tfrac{1}{4}\int u^2\,du\;\;=\;\;\tfrac{1}{12} u^3 + C


Back-substitute:   112(x4+3)3+C\displaystyle \text{Back-substitute: }\;\tfrac{1}{12}(x^4+3)^3 + C

 
Top