Integration by substitution: int x^3 (x^2 + 1)^3/2 dx

cmnalo

Junior Member
Joined
Nov 5, 2006
Messages
61
∫ x^3 (x^2 + 1)^3/2 dx
u= x^2 + 1
du = 2xdx
dx= 1/2du/x

∫ x^3 (u)^3/2 dx
∫ [(u)^3/2][(x^3)(1/2du/x)

I need some assistance with setting up this problem. I think I'm doing it wrong.

Answer: (1/35)(x^2 +1)^5/2 (5x^2 -2) +c
 
\(\displaystyle \L \int x^3 (x^2+1)^{\frac{3}{2}} dx\)

\(\displaystyle \L u = x^2 + 1\)
\(\displaystyle \L x^2 = u - 1\)
\(\displaystyle \L du = 2x dx\)

\(\displaystyle \L \frac{1}{2} \int 2x \cdot x^2 (x^2+1)^{\frac{3}{2}} dx\)

\(\displaystyle \L \frac{1}{2} \int (u-1)u^{\frac{3}{2}} du\)

\(\displaystyle \L \frac{1}{2} \int u^{\frac{5}{2}} - u^{\frac{3}{2}} du\)

take it from here?
 
skeeter-
I'm confused on what you did to change the X^3 into 1/2 ∫ (2x)(x^2)?
 
multiply it out for yourself ...

(1/2)*2x*x<sup>2</sup> = x<sup>3</sup>

had to break it up ... you only need one x for du (2x dx = du)

the leftover x<sup>2</sup> can be defined in terms of u ...

since u = x<sup>2</sup> + 1, x<sup>2</sup> = u - 1

then do the substitution.
 
Skeeter-
After looking over your note, I see where you got the u-1 but how did you convert it to u^(5/2) - u. . ...?
 
\(\displaystyle \L (u - 1)u^{\frac{3}{2}}\)

distribute the \(\displaystyle \L u^{\frac{3}{2}}\) ...

\(\displaystyle \L u \cdot u^{\frac{3}{2}} - u^{\frac{3}{2}} = u^1 \cdot u^{\frac{3}{2}} - u^{\frac{3}{2}}\)

so ... what do you get when you simplify the first term?
 
so..

(1/2) [2/7u^(7/2)] - [2/5u^(5/2)] +c

correct? Now do I distribute the 1/2. I'm still confused on the final steps.
 
you're having a time with the algebra, aren't you?

\(\displaystyle \L \frac{1}{2} \left(\frac{2}{7}u^{\frac{7}{2}} - \frac{2}{5}u^{\frac{5}{2}} \right) + C\)

now ... factor out \(\displaystyle \L 2u^{\frac{5}{2}}\) from the terms in ( ) ...

\(\displaystyle \L \frac{1}{2} \cdot 2u^{\frac{5}{2}} \left(\frac{u}{7} - \frac{1}{5} \right) + C\)

\(\displaystyle \L u^{\frac{5}{2}} \left(\frac{5u-7}{35} \right) + C\)

back-substitute \(\displaystyle \L x^2 + 1\) for \(\displaystyle \L u\) ...

\(\displaystyle \L (x^2 + 1)^{\frac{5}{2}} \left[\frac{5(x^2+1)-7}{35}\right] + C\)

\(\displaystyle \L (x^2 + 1)^{\frac{5}{2}} \left(\frac{5x^2-2}{35}\right) + C\)

\(\displaystyle \L \frac{1}{35} (x^2 + 1)^{\frac{5}{2}} (5x^2-2) + C\)
 
Top