T_TEngineer_AdamT_T
New member
- Joined
- Apr 15, 2007
- Messages
- 24
i got stuck with this substitution problem:
\(\displaystyle \L \int\, \frac{2x^5\, +\, 3x^2}{\sqrt{1\, +\, 2x^3\, }}\, dx\)
Let u = 1 + 2x^3
du = 6x^2 dx
\(\displaystyle \L \int\, {\frac{x^2\, (2x^3\, +\, 3)}{\sqrt{u\, }}\, \frac{du}{6x^2}\)
\(\displaystyle \L \frac{1}{6}\, \int\, {\frac{2\left(\frac{u}{2}\, -\, \frac{1}{2}\right)\, +\, 3}{\sqrt{u\, }}\, du\)
\(\displaystyle \L \frac{1}{6}\, \int\, \frac{u\, +\, 2}{\sqrt{u\, }}\, du\)
omg and i got stuck with this part which does not match the answer key w/c is:
\(\displaystyle \L \frac{1}{9}\, \sqrt{1\, +\, 2x^3\, }\, \left(2x^3\, +\, 7\right)\, +\, C\)
i think my substitution is wrong... help me
\(\displaystyle \L \int\, \frac{2x^5\, +\, 3x^2}{\sqrt{1\, +\, 2x^3\, }}\, dx\)
Let u = 1 + 2x^3
du = 6x^2 dx
\(\displaystyle \L \int\, {\frac{x^2\, (2x^3\, +\, 3)}{\sqrt{u\, }}\, \frac{du}{6x^2}\)
\(\displaystyle \L \frac{1}{6}\, \int\, {\frac{2\left(\frac{u}{2}\, -\, \frac{1}{2}\right)\, +\, 3}{\sqrt{u\, }}\, du\)
\(\displaystyle \L \frac{1}{6}\, \int\, \frac{u\, +\, 2}{\sqrt{u\, }}\, du\)
omg and i got stuck with this part which does not match the answer key w/c is:
\(\displaystyle \L \frac{1}{9}\, \sqrt{1\, +\, 2x^3\, }\, \left(2x^3\, +\, 7\right)\, +\, C\)
i think my substitution is wrong... help me