integration.. by reduction maybe?

Hello, hgaon001!

Yes, we can reduce the integrand . . .


12tan6(3x)dx\displaystyle 12\int\tan^6(3x)\,dx

tan6(3x)=tan4(3x)tan2(3x)\displaystyle \tan^6(3x) \:=\:\tan^4(3x)\tan^2(3x)

. . . . . . =  tan4(3x)[sec2(3x)1]\displaystyle =\;\tan^4(3x)\overbrace{\left[\sec^2(3x) - 1\right]}

. . . . . . =  tan4(3x)sec2(3x)tan4(3x)\displaystyle =\;\tan^4(3x)\sec^2(3x) - \tan^4(3x)

. . . . . . =  tan4(3x)sec2(3x)tan2(3x)tan2(3x)\displaystyle =\;\tan^4(3x)\sec^2(3x) - \overbrace{\tan^2(3x)\tan^2(3x)}

. . . . . . =  tan4(3x)sec2(3x)tan2(3x)[sec2(3x)1]\displaystyle =\;\tan^4(3x)\sec^2(3x) - \tan^2(3x)\overbrace{\left[\sec^2(3x) - 1\right]}

. . . . . . =  tan4(3x)sec2(3x)tan2(3x)sec2(3x)+tan2(3x)\displaystyle =\;\tan^4(3x)\sec^2(3x) - \tan^2(3x)\sec^2(3x) + \tan^2(3x)

. . . . . . =  tan4(3x)sec2(3x)tan2(3x)sec2(3x)+sec2(3x)1\displaystyle =\;\tan^4(3x)\sec^2(3x) - \tan^2(3x)\sec^2(3x) + \overbrace{\sec^2(3x) - 1}


\(\displaystyle \text{We have: }\:12\bigg[\int\!\tan^4(3x)\sec^2(3x)\,dx \;- \int\!\tan^2(3x)\sec^2(3x)\,dx \;+ \int\!\sec^2(3x)\.dx \;- \int\!dx\bigg]\)

Can you finish it now?

 
Another way: If you look in the back of your Calc. book, it sould have a list of commonly used integrals.

The one we are interested in is; tann(u)du = tann1(u)n1  tann2(u)du.\displaystyle The \ one \ we \ are \ interested \ in \ is; \ \int tan^{n}(u)du \ = \ \frac{tan^{n-1}(u)}{n-1} \ - \ \int tan^{n-2}(u)du.

Hence, 12tan6(3x)dx = 4tan6(u)du, letting u = 3x, we getdu3 = dx.\displaystyle Hence, \ 12\int tan^{6}(3x)dx \ = \ 4\int tan^{6}(u)du, \ letting \ u \ = \ 3x, \ we \ get\frac{du}{3} \ = \ dx.

Ergo, 4tan6(u)du = 4[tan5(u)5  tan4(u)du]\displaystyle Ergo, \ 4\int tan^{6}(u)du \ = \ 4[\frac{tan^{5}(u)}{5} \ - \ \int tan^{4}(u)du]

Now, tan4(u)du = tan3(u)3  tan2(u)du and\displaystyle Now, \ \int tan^{4}(u)du \ = \ \frac{tan^{3}(u)}{3} \ - \ \int tan^{2}(u)du \ and

tan2(u)du = tan(u)du = tan(u)u+C.\displaystyle \int tan^{2}(u)du \ = \ tan(u)-\int du \ = \ tan(u)-u+C.

Putting it all together we get: 4tan6(u)du = 4[tan5(u)5tan3(u)3+tan(u)u]+C\displaystyle Putting \ it \ all \ together \ we \ get: \ 4\int tan^{6}(u)du \ = \ 4[\frac{tan^{5}(u)}{5}-\frac{tan^{3}(u)}{3}+tan(u)-u]+C

Ergo: 12tan6(3x)dx = 4tan5(3x)54tan3(3x)3+4tan(3x)12x+C, u = 3x, du = 3dx.\displaystyle Ergo: \ 12\int tan^{6}(3x)dx \ = \ \frac{4tan^{5}(3x)}{5}-\frac{4tan^{3}(3x)}{3}+4tan(3x)-12x+C, \ u \ = \ 3x, \ du \ = \ 3dx.


Check: Dx[4tan5(3x)54tan3(3x)3+4tan(3x)12x+C] = 12tan6(3x).\displaystyle Check: \ D_x[\frac{4tan^{5}(3x)}{5}-\frac{4tan^{3}(3x)}{3}+4tan(3x)-12x+C] \ = \ 12tan^{6}(3x).

The above check would be a good exercise in your derivative acumen.\displaystyle The \ above \ check \ would \ be \ a \ good \ exercise \ in \ your \ derivative \ acumen.
 
Top