integral of 12(tan^6(3x))dx
S soroban Elite Member Joined Jan 28, 2005 Messages 5,586 Jul 12, 2009 #2 Hello, hgaon001! Yes, we can reduce the integrand . . . 12∫tan6(3x) dx\displaystyle 12\int\tan^6(3x)\,dx12∫tan6(3x)dx Click to expand... tan6(3x) = tan4(3x)tan2(3x)\displaystyle \tan^6(3x) \:=\:\tan^4(3x)\tan^2(3x)tan6(3x)=tan4(3x)tan2(3x) . . . . . . = tan4(3x)[sec2(3x)−1]⏞\displaystyle =\;\tan^4(3x)\overbrace{\left[\sec^2(3x) - 1\right]}=tan4(3x)[sec2(3x)−1] . . . . . . = tan4(3x)sec2(3x)−tan4(3x)\displaystyle =\;\tan^4(3x)\sec^2(3x) - \tan^4(3x)=tan4(3x)sec2(3x)−tan4(3x) . . . . . . = tan4(3x)sec2(3x)−tan2(3x)tan2(3x)⏞\displaystyle =\;\tan^4(3x)\sec^2(3x) - \overbrace{\tan^2(3x)\tan^2(3x)}=tan4(3x)sec2(3x)−tan2(3x)tan2(3x) . . . . . . = tan4(3x)sec2(3x)−tan2(3x)[sec2(3x)−1]⏞\displaystyle =\;\tan^4(3x)\sec^2(3x) - \tan^2(3x)\overbrace{\left[\sec^2(3x) - 1\right]}=tan4(3x)sec2(3x)−tan2(3x)[sec2(3x)−1] . . . . . . = tan4(3x)sec2(3x)−tan2(3x)sec2(3x)+tan2(3x)\displaystyle =\;\tan^4(3x)\sec^2(3x) - \tan^2(3x)\sec^2(3x) + \tan^2(3x)=tan4(3x)sec2(3x)−tan2(3x)sec2(3x)+tan2(3x) . . . . . . = tan4(3x)sec2(3x)−tan2(3x)sec2(3x)+sec2(3x)−1⏞\displaystyle =\;\tan^4(3x)\sec^2(3x) - \tan^2(3x)\sec^2(3x) + \overbrace{\sec^2(3x) - 1}=tan4(3x)sec2(3x)−tan2(3x)sec2(3x)+sec2(3x)−1 \(\displaystyle \text{We have: }\:12\bigg[\int\!\tan^4(3x)\sec^2(3x)\,dx \;- \int\!\tan^2(3x)\sec^2(3x)\,dx \;+ \int\!\sec^2(3x)\.dx \;- \int\!dx\bigg]\) Can you finish it now?
Hello, hgaon001! Yes, we can reduce the integrand . . . 12∫tan6(3x) dx\displaystyle 12\int\tan^6(3x)\,dx12∫tan6(3x)dx Click to expand... tan6(3x) = tan4(3x)tan2(3x)\displaystyle \tan^6(3x) \:=\:\tan^4(3x)\tan^2(3x)tan6(3x)=tan4(3x)tan2(3x) . . . . . . = tan4(3x)[sec2(3x)−1]⏞\displaystyle =\;\tan^4(3x)\overbrace{\left[\sec^2(3x) - 1\right]}=tan4(3x)[sec2(3x)−1] . . . . . . = tan4(3x)sec2(3x)−tan4(3x)\displaystyle =\;\tan^4(3x)\sec^2(3x) - \tan^4(3x)=tan4(3x)sec2(3x)−tan4(3x) . . . . . . = tan4(3x)sec2(3x)−tan2(3x)tan2(3x)⏞\displaystyle =\;\tan^4(3x)\sec^2(3x) - \overbrace{\tan^2(3x)\tan^2(3x)}=tan4(3x)sec2(3x)−tan2(3x)tan2(3x) . . . . . . = tan4(3x)sec2(3x)−tan2(3x)[sec2(3x)−1]⏞\displaystyle =\;\tan^4(3x)\sec^2(3x) - \tan^2(3x)\overbrace{\left[\sec^2(3x) - 1\right]}=tan4(3x)sec2(3x)−tan2(3x)[sec2(3x)−1] . . . . . . = tan4(3x)sec2(3x)−tan2(3x)sec2(3x)+tan2(3x)\displaystyle =\;\tan^4(3x)\sec^2(3x) - \tan^2(3x)\sec^2(3x) + \tan^2(3x)=tan4(3x)sec2(3x)−tan2(3x)sec2(3x)+tan2(3x) . . . . . . = tan4(3x)sec2(3x)−tan2(3x)sec2(3x)+sec2(3x)−1⏞\displaystyle =\;\tan^4(3x)\sec^2(3x) - \tan^2(3x)\sec^2(3x) + \overbrace{\sec^2(3x) - 1}=tan4(3x)sec2(3x)−tan2(3x)sec2(3x)+sec2(3x)−1 \(\displaystyle \text{We have: }\:12\bigg[\int\!\tan^4(3x)\sec^2(3x)\,dx \;- \int\!\tan^2(3x)\sec^2(3x)\,dx \;+ \int\!\sec^2(3x)\.dx \;- \int\!dx\bigg]\) Can you finish it now?
B BigGlenntheHeavy Senior Member Joined Mar 8, 2009 Messages 1,577 Jul 15, 2009 #3 Another way: If you look in the back of your Calc. book, it sould have a list of commonly used integrals. The one we are interested in is; ∫tann(u)du = tann−1(u)n−1 − ∫tann−2(u)du.\displaystyle The \ one \ we \ are \ interested \ in \ is; \ \int tan^{n}(u)du \ = \ \frac{tan^{n-1}(u)}{n-1} \ - \ \int tan^{n-2}(u)du.The one we are interested in is; ∫tann(u)du = n−1tann−1(u) − ∫tann−2(u)du. Hence, 12∫tan6(3x)dx = 4∫tan6(u)du, letting u = 3x, we getdu3 = dx.\displaystyle Hence, \ 12\int tan^{6}(3x)dx \ = \ 4\int tan^{6}(u)du, \ letting \ u \ = \ 3x, \ we \ get\frac{du}{3} \ = \ dx.Hence, 12∫tan6(3x)dx = 4∫tan6(u)du, letting u = 3x, we get3du = dx. Ergo, 4∫tan6(u)du = 4[tan5(u)5 − ∫tan4(u)du]\displaystyle Ergo, \ 4\int tan^{6}(u)du \ = \ 4[\frac{tan^{5}(u)}{5} \ - \ \int tan^{4}(u)du]Ergo, 4∫tan6(u)du = 4[5tan5(u) − ∫tan4(u)du] Now, ∫tan4(u)du = tan3(u)3 − ∫tan2(u)du and\displaystyle Now, \ \int tan^{4}(u)du \ = \ \frac{tan^{3}(u)}{3} \ - \ \int tan^{2}(u)du \ andNow, ∫tan4(u)du = 3tan3(u) − ∫tan2(u)du and ∫tan2(u)du = tan(u)−∫du = tan(u)−u+C.\displaystyle \int tan^{2}(u)du \ = \ tan(u)-\int du \ = \ tan(u)-u+C.∫tan2(u)du = tan(u)−∫du = tan(u)−u+C. Putting it all together we get: 4∫tan6(u)du = 4[tan5(u)5−tan3(u)3+tan(u)−u]+C\displaystyle Putting \ it \ all \ together \ we \ get: \ 4\int tan^{6}(u)du \ = \ 4[\frac{tan^{5}(u)}{5}-\frac{tan^{3}(u)}{3}+tan(u)-u]+CPutting it all together we get: 4∫tan6(u)du = 4[5tan5(u)−3tan3(u)+tan(u)−u]+C Ergo: 12∫tan6(3x)dx = 4tan5(3x)5−4tan3(3x)3+4tan(3x)−12x+C, u = 3x, du = 3dx.\displaystyle Ergo: \ 12\int tan^{6}(3x)dx \ = \ \frac{4tan^{5}(3x)}{5}-\frac{4tan^{3}(3x)}{3}+4tan(3x)-12x+C, \ u \ = \ 3x, \ du \ = \ 3dx.Ergo: 12∫tan6(3x)dx = 54tan5(3x)−34tan3(3x)+4tan(3x)−12x+C, u = 3x, du = 3dx. Check: Dx[4tan5(3x)5−4tan3(3x)3+4tan(3x)−12x+C] = 12tan6(3x).\displaystyle Check: \ D_x[\frac{4tan^{5}(3x)}{5}-\frac{4tan^{3}(3x)}{3}+4tan(3x)-12x+C] \ = \ 12tan^{6}(3x).Check: Dx[54tan5(3x)−34tan3(3x)+4tan(3x)−12x+C] = 12tan6(3x). The above check would be a good exercise in your derivative acumen.\displaystyle The \ above \ check \ would \ be \ a \ good \ exercise \ in \ your \ derivative \ acumen.The above check would be a good exercise in your derivative acumen.
Another way: If you look in the back of your Calc. book, it sould have a list of commonly used integrals. The one we are interested in is; ∫tann(u)du = tann−1(u)n−1 − ∫tann−2(u)du.\displaystyle The \ one \ we \ are \ interested \ in \ is; \ \int tan^{n}(u)du \ = \ \frac{tan^{n-1}(u)}{n-1} \ - \ \int tan^{n-2}(u)du.The one we are interested in is; ∫tann(u)du = n−1tann−1(u) − ∫tann−2(u)du. Hence, 12∫tan6(3x)dx = 4∫tan6(u)du, letting u = 3x, we getdu3 = dx.\displaystyle Hence, \ 12\int tan^{6}(3x)dx \ = \ 4\int tan^{6}(u)du, \ letting \ u \ = \ 3x, \ we \ get\frac{du}{3} \ = \ dx.Hence, 12∫tan6(3x)dx = 4∫tan6(u)du, letting u = 3x, we get3du = dx. Ergo, 4∫tan6(u)du = 4[tan5(u)5 − ∫tan4(u)du]\displaystyle Ergo, \ 4\int tan^{6}(u)du \ = \ 4[\frac{tan^{5}(u)}{5} \ - \ \int tan^{4}(u)du]Ergo, 4∫tan6(u)du = 4[5tan5(u) − ∫tan4(u)du] Now, ∫tan4(u)du = tan3(u)3 − ∫tan2(u)du and\displaystyle Now, \ \int tan^{4}(u)du \ = \ \frac{tan^{3}(u)}{3} \ - \ \int tan^{2}(u)du \ andNow, ∫tan4(u)du = 3tan3(u) − ∫tan2(u)du and ∫tan2(u)du = tan(u)−∫du = tan(u)−u+C.\displaystyle \int tan^{2}(u)du \ = \ tan(u)-\int du \ = \ tan(u)-u+C.∫tan2(u)du = tan(u)−∫du = tan(u)−u+C. Putting it all together we get: 4∫tan6(u)du = 4[tan5(u)5−tan3(u)3+tan(u)−u]+C\displaystyle Putting \ it \ all \ together \ we \ get: \ 4\int tan^{6}(u)du \ = \ 4[\frac{tan^{5}(u)}{5}-\frac{tan^{3}(u)}{3}+tan(u)-u]+CPutting it all together we get: 4∫tan6(u)du = 4[5tan5(u)−3tan3(u)+tan(u)−u]+C Ergo: 12∫tan6(3x)dx = 4tan5(3x)5−4tan3(3x)3+4tan(3x)−12x+C, u = 3x, du = 3dx.\displaystyle Ergo: \ 12\int tan^{6}(3x)dx \ = \ \frac{4tan^{5}(3x)}{5}-\frac{4tan^{3}(3x)}{3}+4tan(3x)-12x+C, \ u \ = \ 3x, \ du \ = \ 3dx.Ergo: 12∫tan6(3x)dx = 54tan5(3x)−34tan3(3x)+4tan(3x)−12x+C, u = 3x, du = 3dx. Check: Dx[4tan5(3x)5−4tan3(3x)3+4tan(3x)−12x+C] = 12tan6(3x).\displaystyle Check: \ D_x[\frac{4tan^{5}(3x)}{5}-\frac{4tan^{3}(3x)}{3}+4tan(3x)-12x+C] \ = \ 12tan^{6}(3x).Check: Dx[54tan5(3x)−34tan3(3x)+4tan(3x)−12x+C] = 12tan6(3x). The above check would be a good exercise in your derivative acumen.\displaystyle The \ above \ check \ would \ be \ a \ good \ exercise \ in \ your \ derivative \ acumen.The above check would be a good exercise in your derivative acumen.