Find the Volume of the solid obtained by revolving the region bounded by y=sin(x), x=0 and x=pi/2
pi?sin[sup:2sdu2uuw]2[/sup:2sdu2uuw]x dx
I decided not to let u=sinx and dv=sinxdx because I would just get cos[sup:2sdu2uuw]2[/sup:2sdu2uuw]x in the next integral and I think I would be going in circles
u=sin[sup:2sdu2uuw]2[/sup:2sdu2uuw]x du=2cosxsinxdx
dv=dx v=x
uv-?vdu
xsin[sup:2sdu2uuw]2[/sup:2sdu2uuw]x - 2?xsinxcosx dx
and then I am stuck
pi?sin[sup:2sdu2uuw]2[/sup:2sdu2uuw]x dx
I decided not to let u=sinx and dv=sinxdx because I would just get cos[sup:2sdu2uuw]2[/sup:2sdu2uuw]x in the next integral and I think I would be going in circles
u=sin[sup:2sdu2uuw]2[/sup:2sdu2uuw]x du=2cosxsinxdx
dv=dx v=x
uv-?vdu
xsin[sup:2sdu2uuw]2[/sup:2sdu2uuw]x - 2?xsinxcosx dx
and then I am stuck