how do you integrate by parts: S x^2 lnx dx ?
J jeng New member Joined Apr 13, 2006 Messages 6 Apr 14, 2006 #1 how do you integrate by parts: S x^2 lnx dx ?
S soroban Elite Member Joined Jan 28, 2005 Messages 5,586 Apr 14, 2006 #2 Hello, jeng! Integrate by parts: \(\displaystyle \L\:\int x^2\cdot\ln x\,dx\) Click to expand... There are only two choices: \(\displaystyle \;\)Let \(\displaystyle u \,=\, x^2\) . . . or let \(\displaystyle u \,=\, \ln x\) Did you try them? Let: \(\displaystyle u\,=\,\ln x\;\;\;\;dv\,=\,x^2\,dx\) Then: \(\displaystyle du\,=\,\frac{dx}{x}\;\;\;v\,=\,\frac{1}{3}x^3\) And we have: \(\displaystyle \;\frac{1}{3}x^3\cdot\ln x\,-\,\L\int\)\(\displaystyle \left(\frac{1}{3}x^3\right)\left(\frac{dx}{x}\right) \;= \;\frac{1}{3}x^3\cdot\ln x\,-\,\frac{1}{3}\L\int\)\(\displaystyle x^2\,dx\) Can you finish it?
Hello, jeng! Integrate by parts: \(\displaystyle \L\:\int x^2\cdot\ln x\,dx\) Click to expand... There are only two choices: \(\displaystyle \;\)Let \(\displaystyle u \,=\, x^2\) . . . or let \(\displaystyle u \,=\, \ln x\) Did you try them? Let: \(\displaystyle u\,=\,\ln x\;\;\;\;dv\,=\,x^2\,dx\) Then: \(\displaystyle du\,=\,\frac{dx}{x}\;\;\;v\,=\,\frac{1}{3}x^3\) And we have: \(\displaystyle \;\frac{1}{3}x^3\cdot\ln x\,-\,\L\int\)\(\displaystyle \left(\frac{1}{3}x^3\right)\left(\frac{dx}{x}\right) \;= \;\frac{1}{3}x^3\cdot\ln x\,-\,\frac{1}{3}\L\int\)\(\displaystyle x^2\,dx\) Can you finish it?
tkhunny Moderator Staff member Joined Apr 12, 2005 Messages 11,339 Apr 14, 2006 #3 I just like to demonstrate this alternate notation. \(\displaystyle \L\int{x^{2}\cdot\ln(x)\,dx\,=\,\int{ln(x)}\,d(\frac{x^{3}}{3})}\,=\,ln(x)\cdot\frac{x^{3}}{3}-\int{\frac{x^{3}}{3}}\,d(ln(x))\,=\,ln(x)\cdot\frac{x^{3}}{3}-\int{\frac{x^{2}}{3}}\,dx\) Same result, of course.
I just like to demonstrate this alternate notation. \(\displaystyle \L\int{x^{2}\cdot\ln(x)\,dx\,=\,\int{ln(x)}\,d(\frac{x^{3}}{3})}\,=\,ln(x)\cdot\frac{x^{3}}{3}-\int{\frac{x^{3}}{3}}\,d(ln(x))\,=\,ln(x)\cdot\frac{x^{3}}{3}-\int{\frac{x^{2}}{3}}\,dx\) Same result, of course.