Integration by parts: int (1/(x^(1/3)+x^(1/2))) dx

Re: Integration by parts

Why do think the antiderivative exists in a simple form?

This may lead to something.

x1/3+x1/2=(x1/6)2(x1/6+1)\displaystyle x^{1/3} + x^{1/2} = \left( x^{1/6} \right)^{2} \cdot \left( x^{1/6}+1 \right)

Or, maybe it won't.
 
Re: Integration by parts

One way, a good workout with tex.\displaystyle One \ way, \ a \ good \ workout \ with \ tex.

dxx1/2+x1/3 = dxx1/3(1+x1/6)\displaystyle \int\frac{dx}{x^{1/2}+x^{1/3}} \ = \ \int\frac{dx}{x^{1/3}(1+x^{1/6})}

Let u = 1+x1/6, then x1/6 = u1 and du = dx6x5/6 = dx6(u1)5\displaystyle Let \ u \ = \ 1+x^{1/6}, \ then \ x^{1/6} \ = \ u-1 \ and \ du \ = \ \frac{dx}{6x^{5/6}} \ = \ \frac{dx}{6(u-1)^{5}}

So 6(u1)5du = dx and x1/3 = (u1)2.\displaystyle So \ 6(u-1)^{5}du \ = \ dx \ and \ x^{1/3} \ = \ (u-1)^{2}.

Ergo, 6(u1)5duu(u1)2 = 6(u1)3duu = 6(u33u2+3u1)duu\displaystyle Ergo, \ 6\int\frac{(u-1)^{5}du}{u(u-1)^{2}} \ = \ 6\int\frac{(u-1)^{3}du}{u} \ = \ 6\int\frac{(u^{3}-3u^{2}+3u-1)du}{u}
 = 6(u23u+31u)du = 6[u333u22+3ulnu]+C1.\displaystyle \ = \ 6\int(u^{2}-3u+3-\frac{1}{u})du \ = \ 6[\frac{u^{3}}{3}-\frac{3u^{2}}{2}+3u-ln|u|]+ C_{1}.

Substituting and expanding, we get x1/6(2x1/33x1/6+6)6ln(1+x1/6)+C, C = 11+C1.\displaystyle Substituting \ and \ expanding, \ we \ get \ x^{1/6}(2x^{1/3}-3x^{1/6}+6)-6ln(1+x^{1/6})+C, \ C \ = \ 11+C_{1}.
 
Re: Integration by parts

Hello, willc!


Let: x16=ux=u6x13=u2x12=u3dx=6u5du\displaystyle \text{Let: }\:x^{\frac{1}{6}} \:=\:u \quad\Rightarrow\quad x \:=\: u^6 \quad\Rightarrow\quad x^{\frac{1}{3}} \:=\:u^2 \quad\Rightarrow\quad x^{\frac{1}{2}} \:=\:u^3 \quad\Rightarrow\quad dx \:=\:6u^5\,du


Substtute:   6u5duu2+u3  =  6u31+udu\displaystyle \text{Substtute: }\;\int\frac{6u^5\,du}{u^2 + u^3} \;=\;6\int\frac{u^3}{1+u}\,du


Long division:   6(u2u+11u+1)du\displaystyle \text{Long division: }\;6\int\left(u^2 - u + 1 - \frac{1}{u+1}\right)\,du

. . . . . . . . =  6[13u312u2+ulnu+1]+C\displaystyle = \;6\left[\tfrac{1}{3}u^3 - \tfrac{1}{2}u^2 + u - \ln|u + 1|\right] + C


Back-substitute:   6[13(x16)312(x16)2+x16lnx16+1]+C\displaystyle \text{Back-substitute: }\;6\bigg[\tfrac{1}{3}(x^{\frac{1}{6}})^3 - \tfrac{1}{2}(x^{\frac{1}{6}})^2 + x^{\frac{1}{6}} - \ln\left|x^{\frac{1}{6}} + 1\right| \bigg] + C

. . . . . . . . . . =  6[13x1212x13+x16lnx16+1]+C\displaystyle =\;6\bigg[\tfrac{1}{3}x^{\frac{1}{2}} - \tfrac{1}{2}x^{\frac{1}{3}} + x^{\frac{1}{6}} - \ln\left|x^{\frac{1}{6}} + 1\right|\bigg] + C

. . . . . . . . . . =  2x123x13+6x166x16+1+C\displaystyle =\;2x^{\frac{1}{2}} - 3x^{\frac{1}{3}} + 6x^{\frac{1}{6}} - 6\left|x^{\frac{1}{6}} + 1\right| + C

 
Top