Re: Integration by parts
\(\displaystyle One \ way, \ a \ good \ workout \ with \ tex.\)
\(\displaystyle \int\frac{dx}{x^{1/2}+x^{1/3}} \ = \ \int\frac{dx}{x^{1/3}(1+x^{1/6})}\)
\(\displaystyle Let \ u \ = \ 1+x^{1/6}, \ then \ x^{1/6} \ = \ u-1 \ and \ du \ = \ \frac{dx}{6x^{5/6}} \ = \ \frac{dx}{6(u-1)^{5}}\)
\(\displaystyle So \ 6(u-1)^{5}du \ = \ dx \ and \ x^{1/3} \ = \ (u-1)^{2}.\)
\(\displaystyle Ergo, \ 6\int\frac{(u-1)^{5}du}{u(u-1)^{2}} \ = \ 6\int\frac{(u-1)^{3}du}{u} \ = \ 6\int\frac{(u^{3}-3u^{2}+3u-1)du}{u}\)
\(\displaystyle \ = \ 6\int(u^{2}-3u+3-\frac{1}{u})du \ = \ 6[\frac{u^{3}}{3}-\frac{3u^{2}}{2}+3u-ln|u|]+ C_{1}.\)
\(\displaystyle Substituting \ and \ expanding, \ we \ get \ x^{1/6}(2x^{1/3}-3x^{1/6}+6)-6ln(1+x^{1/6})+C, \ C \ = \ 11+C_{1}.\)