Integration: arclength for x = (1/3)sqrt[y](y - 3), 1<=y<=9

scrum

Junior Member
Joined
Oct 11, 2007
Messages
55
I've got this arclength problem

708468img1.gif


And I did the first bits with the arclength formula (
afe47a80440ceb225e21daf7caa71de5.png
)


until I reach a bit where I have Integration from 9 to 1 of Sqrt(.25y+.25y^-1 -.5)

I don't know how to integrate that. U substitution fails because .25y^-1 turns into -.25y^-2 in the Du.

I do know from using a computer that I'm on the right track as the area under that curve from 9 to 1 was the correct answer, and that the answer is 10.66667
 
Re: Integration

If you square the derivative you get (y1)24y\displaystyle \frac{(y-1)^{2}}{4y}

Add 1 and take the square root and get:

1y(y+1)2\displaystyle \frac{\sqrt{\frac{1}{y}}(y+1)}{2}

So, you must integrate 1219y+1ydy\displaystyle \frac{1}{2}\int_{1}^{9}\frac{y+1}{\sqrt{y}}dy

Now, let u=y,   2du=1ydy,   u2=y\displaystyle u=\sqrt{y}, \;\ 2du=\frac{1}{\sqrt{y}}dy, \;\ u^{2}=y

Make the subs and get:

13(u2+1)du\displaystyle \int_{1}^{3}(u^{2}+1)du
 
Re: Integration

Hello, scrum!

Check your algebra . . .


x  =  13y(y3)1y9\displaystyle x \;=\;\frac{1}{3}\sqrt{y}(y-3)\quad 1 \leq y \leq 9

We have:   x  =  12(y323y12)\displaystyle \text{We have: }\;x \;=\;\frac{1}{2}\left(y^{\frac{3}{2}} - 3y^{\frac{1}{2}}\right)

Then:   dxdy  =  13(32y1232y12)  =  12(y12y12)\displaystyle \text{Then: }\;\frac{dx}{dy} \;=\;\frac{1}{3}\left(\frac{3}{2}y^{\frac{1}{2}} - \frac{3}{2}y^{-\frac{1}{2}}\right) \;=\;\frac{1}{2}\left(y^{\frac{1}{2}} - y^{-\frac{1}{2}}\right)

. . . . (dxdy)2  =  14(y12y12)2  =  14(y2+y1)\displaystyle \left(\frac{dx}{dy}\right)^2 \;=\;\frac{1}{4}\left(y^{\frac{1}{2}} - y ^{-\frac{1}{2}}\right)^2 \;=\;\frac{1}{4}\left(y - 2 + y^{-1}\right)

. . 1+(dxdy)2  =  1+14(y2+y1)  =  14(y+2+y1)  =  14(y+y1)2\displaystyle 1 + \left(\frac{dx}{dy}\right)^2 \;=\; 1 + \frac{1}{4}\left(y - 2 + y^{-1}\right) \;=\;\frac{1}{4}\left(y + 2 + y^{-1}\right) \;=\; \frac{1}{4}\left(y + y^{-1}\right)^2

Therefore:   1+(dxdy)  =  12(y+y1)\displaystyle \text{Therefore: }\;\sqrt{1 + \left(\frac{dx}{dy}\right)} \;=\;\frac{1}{2}\left(y + y^{-1}\right)


Now try it . . .

 
Top